📄 kconfig
字号:
# The code disables itself when not needed.config GART_IOMMU bool "GART IOMMU support" if EMBEDDED default y select SWIOTLB select AGP depends on X86_64 && PCI help Support for full DMA access of devices with 32bit memory access only on systems with more than 3GB. This is usually needed for USB, sound, many IDE/SATA chipsets and some other devices. Provides a driver for the AMD Athlon64/Opteron/Turion/Sempron GART based hardware IOMMU and a software bounce buffer based IOMMU used on Intel systems and as fallback. The code is only active when needed (enough memory and limited device) unless CONFIG_IOMMU_DEBUG or iommu=force is specified too.config CALGARY_IOMMU bool "IBM Calgary IOMMU support" select SWIOTLB depends on X86_64 && PCI && EXPERIMENTAL help Support for hardware IOMMUs in IBM's xSeries x366 and x460 systems. Needed to run systems with more than 3GB of memory properly with 32-bit PCI devices that do not support DAC (Double Address Cycle). Calgary also supports bus level isolation, where all DMAs pass through the IOMMU. This prevents them from going anywhere except their intended destination. This catches hard-to-find kernel bugs and mis-behaving drivers and devices that do not use the DMA-API properly to set up their DMA buffers. The IOMMU can be turned off at boot time with the iommu=off parameter. Normally the kernel will make the right choice by itself. If unsure, say Y.config CALGARY_IOMMU_ENABLED_BY_DEFAULT bool "Should Calgary be enabled by default?" default y depends on CALGARY_IOMMU help Should Calgary be enabled by default? if you choose 'y', Calgary will be used (if it exists). If you choose 'n', Calgary will not be used even if it exists. If you choose 'n' and would like to use Calgary anyway, pass 'iommu=calgary' on the kernel command line. If unsure, say Y.# need this always selected by IOMMU for the VIA workaroundconfig SWIOTLB bool help Support for software bounce buffers used on x86-64 systems which don't have a hardware IOMMU (e.g. the current generation of Intel's x86-64 CPUs). Using this PCI devices which can only access 32-bits of memory can be used on systems with more than 3 GB of memory. If unsure, say Y.config NR_CPUS int "Maximum number of CPUs (2-255)" range 2 255 depends on SMP default "32" if X86_NUMAQ || X86_SUMMIT || X86_BIGSMP || X86_ES7000 default "8" help This allows you to specify the maximum number of CPUs which this kernel will support. The maximum supported value is 255 and the minimum value which makes sense is 2. This is purely to save memory - each supported CPU adds approximately eight kilobytes to the kernel image.config SCHED_SMT bool "SMT (Hyperthreading) scheduler support" depends on (X86_64 && SMP) || (X86_32 && X86_HT) help SMT scheduler support improves the CPU scheduler's decision making when dealing with Intel Pentium 4 chips with HyperThreading at a cost of slightly increased overhead in some places. If unsure say N here.config SCHED_MC bool "Multi-core scheduler support" depends on (X86_64 && SMP) || (X86_32 && X86_HT) default y help Multi-core scheduler support improves the CPU scheduler's decision making when dealing with multi-core CPU chips at a cost of slightly increased overhead in some places. If unsure say N here.source "kernel/Kconfig.preempt"config X86_UP_APIC bool "Local APIC support on uniprocessors" depends on X86_32 && !SMP && !(X86_VISWS || X86_VOYAGER || X86_GENERICARCH) help A local APIC (Advanced Programmable Interrupt Controller) is an integrated interrupt controller in the CPU. If you have a single-CPU system which has a processor with a local APIC, you can say Y here to enable and use it. If you say Y here even though your machine doesn't have a local APIC, then the kernel will still run with no slowdown at all. The local APIC supports CPU-generated self-interrupts (timer, performance counters), and the NMI watchdog which detects hard lockups.config X86_UP_IOAPIC bool "IO-APIC support on uniprocessors" depends on X86_UP_APIC help An IO-APIC (I/O Advanced Programmable Interrupt Controller) is an SMP-capable replacement for PC-style interrupt controllers. Most SMP systems and many recent uniprocessor systems have one. If you have a single-CPU system with an IO-APIC, you can say Y here to use it. If you say Y here even though your machine doesn't have an IO-APIC, then the kernel will still run with no slowdown at all.config X86_LOCAL_APIC bool depends on X86_64 || (X86_32 && (X86_UP_APIC || ((X86_VISWS || SMP) && !X86_VOYAGER) || X86_GENERICARCH)) default yconfig X86_IO_APIC bool depends on X86_64 || (X86_32 && (X86_UP_IOAPIC || (SMP && !(X86_VISWS || X86_VOYAGER)) || X86_GENERICARCH)) default yconfig X86_VISWS_APIC bool depends on X86_32 && X86_VISWS default yconfig X86_MCE bool "Machine Check Exception" depends on !X86_VOYAGER ---help--- Machine Check Exception support allows the processor to notify the kernel if it detects a problem (e.g. overheating, component failure). The action the kernel takes depends on the severity of the problem, ranging from a warning message on the console, to halting the machine. Your processor must be a Pentium or newer to support this - check the flags in /proc/cpuinfo for mce. Note that some older Pentium systems have a design flaw which leads to false MCE events - hence MCE is disabled on all P5 processors, unless explicitly enabled with "mce" as a boot argument. Similarly, if MCE is built in and creates a problem on some new non-standard machine, you can boot with "nomce" to disable it. MCE support simply ignores non-MCE processors like the 386 and 486, so nearly everyone can say Y here.config X86_MCE_INTEL bool "Intel MCE features" depends on X86_64 && X86_MCE && X86_LOCAL_APIC default y help Additional support for intel specific MCE features such as the thermal monitor.config X86_MCE_AMD bool "AMD MCE features" depends on X86_64 && X86_MCE && X86_LOCAL_APIC default y help Additional support for AMD specific MCE features such as the DRAM Error Threshold.config X86_MCE_NONFATAL tristate "Check for non-fatal errors on AMD Athlon/Duron / Intel Pentium 4" depends on X86_32 && X86_MCE help Enabling this feature starts a timer that triggers every 5 seconds which will look at the machine check registers to see if anything happened. Non-fatal problems automatically get corrected (but still logged). Disable this if you don't want to see these messages. Seeing the messages this option prints out may be indicative of dying or out-of-spec (ie, overclocked) hardware. This option only does something on certain CPUs. (AMD Athlon/Duron and Intel Pentium 4)config X86_MCE_P4THERMAL bool "check for P4 thermal throttling interrupt." depends on X86_32 && X86_MCE && (X86_UP_APIC || SMP) && !X86_VISWS help Enabling this feature will cause a message to be printed when the P4 enters thermal throttling.config VM86 bool "Enable VM86 support" if EMBEDDED default y depends on X86_32 help This option is required by programs like DOSEMU to run 16-bit legacy code on X86 processors. It also may be needed by software like XFree86 to initialize some video cards via BIOS. Disabling this option saves about 6k.config TOSHIBA tristate "Toshiba Laptop support" depends on X86_32 ---help--- This adds a driver to safely access the System Management Mode of the CPU on Toshiba portables with a genuine Toshiba BIOS. It does not work on models with a Phoenix BIOS. The System Management Mode is used to set the BIOS and power saving options on Toshiba portables. For information on utilities to make use of this driver see the Toshiba Linux utilities web site at: <http://www.buzzard.org.uk/toshiba/>. Say Y if you intend to run this kernel on a Toshiba portable. Say N otherwise.config I8K tristate "Dell laptop support" depends on X86_32 ---help--- This adds a driver to safely access the System Management Mode of the CPU on the Dell Inspiron 8000. The System Management Mode is used to read cpu temperature and cooling fan status and to control the fans on the I8K portables. This driver has been tested only on the Inspiron 8000 but it may also work with other Dell laptops. You can force loading on other models by passing the parameter `force=1' to the module. Use at your own risk. For information on utilities to make use of this driver see the I8K Linux utilities web site at: <http://people.debian.org/~dz/i8k/> Say Y if you intend to run this kernel on a Dell Inspiron 8000. Say N otherwise.config X86_REBOOTFIXUPS bool "Enable X86 board specific fixups for reboot" depends on X86_32 && X86 default n ---help--- This enables chipset and/or board specific fixups to be done in order to get reboot to work correctly. This is only needed on some combinations of hardware and BIOS. The symptom, for which this config is intended, is when reboot ends with a stalled/hung system. Currently, the only fixup is for the Geode machines using CS5530A and CS5536 chipsets. Say Y if you want to enable the fixup. Currently, it's safe to enable this option even if you don't need it. Say N otherwise.config MICROCODE tristate "/dev/cpu/microcode - Intel IA32 CPU microcode support" select FW_LOADER ---help--- If you say Y here, you will be able to update the microcode on Intel processors in the IA32 family, e.g. Pentium Pro, Pentium II, Pentium III, Pentium 4, Xeon etc. You will obviously need the actual microcode binary data itself which is not shipped with the Linux kernel. For latest news and information on obtaining all the required ingredients for this driver, check: <http://www.urbanmyth.org/microcode/>. To compile this driver as a module, choose M here: the module will be called microcode.config MICROCODE_OLD_INTERFACE bool depends on MICROCODE default yconfig X86_MSR tristate "/dev/cpu/*/msr - Model-specific register support" help This device gives privileged processes access to the x86 Model-Specific Registers (MSRs). It is a character device with major 202 and minors 0 to 31 for /dev/cpu/0/msr to /dev/cpu/31/msr. MSR accesses are directed to a specific CPU on multi-processor systems.config X86_CPUID tristate "/dev/cpu/*/cpuid - CPU information support" help This device gives processes access to the x86 CPUID instruction to be executed on a specific processor. It is a character device with major 203 and minors 0 to 31 for /dev/cpu/0/cpuid to /dev/cpu/31/cpuid.choice prompt "High Memory Support" default HIGHMEM4G if !X86_NUMAQ default HIGHMEM64G if X86_NUMAQ depends on X86_32config NOHIGHMEM bool "off" depends on !X86_NUMAQ ---help--- Linux can use up to 64 Gigabytes of physical memory on x86 systems. However, the address space of 32-bit x86 processors is only 4 Gigabytes large. That means that, if you have a large amount of physical memory, not all of it can be "permanently mapped" by the kernel. The physical memory that's not permanently mapped is called "high memory". If you are compiling a kernel which will never run on a machine with more than 1 Gigabyte total physical RAM, answer "off" here (default choice and suitable for most users). This will result in a "3GB/1GB" split: 3GB are mapped so that each process sees a 3GB virtual memory space and the remaining part of the 4GB virtual memory space is used by the kernel to permanently map as much physical memory as possible. If the machine has between 1 and 4 Gigabytes physical RAM, then answer "4GB" here. If more than 4 Gigabytes is used then answer "64GB" here. This selection turns Intel PAE (Physical Address Extension) mode on. PAE implements 3-level paging on IA32 processors. PAE is fully supported by Linux, PAE mode is implemented on all recent Intel processors (Pentium Pro and better). NOTE: If you say "64GB" here, then the kernel will not boot on CPUs that don't support PAE! The actual amount of total physical memory will either be auto detected or can be forced by using a kernel command line option such as "mem=256M". (Try "man bootparam" or see the documentation of your boot loader (lilo or loadlin) about how to pass options to the kernel at boot time.) If unsure, say "off".config HIGHMEM4G bool "4GB" depends on !X86_NUMAQ help Select this if you have a 32-bit processor and between 1 and 4 gigabytes of physical RAM.config HIGHMEM64G bool "64GB" depends on !M386 && !M486 select X86_PAE help Select this if you have a 32-bit processor and more than 4 gigabytes of physical RAM.endchoicechoice depends on EXPERIMENTAL prompt "Memory split" if EMBEDDED default VMSPLIT_3G depends on X86_32 help Select the desired split between kernel and user memory. If the address range available to the kernel is less than the physical memory installed, the remaining memory will be available as "high memory". Accessing high memory is a little more costly than low memory, as it needs to be mapped into the kernel first. Note that increasing the kernel address space limits the range available to user programs, making the address space there tighter. Selecting anything other than the default 3G/1G split will also likely make your kernel incompatible with binary-only kernel modules. If you are not absolutely sure what you are doing, leave this option alone! config VMSPLIT_3G bool "3G/1G user/kernel split" config VMSPLIT_3G_OPT depends on !X86_PAE bool "3G/1G user/kernel split (for full 1G low memory)" config VMSPLIT_2G bool "2G/2G user/kernel split" config VMSPLIT_2G_OPT depends on !X86_PAE bool "2G/2G user/kernel split (for full 2G low memory)" config VMSPLIT_1G bool "1G/3G user/kernel split"endchoiceconfig PAGE_OFFSET hex default 0xB0000000 if VMSPLIT_3G_OPT default 0x80000000 if VMSPLIT_2G default 0x78000000 if VMSPLIT_2G_OPT default 0x40000000 if VMSPLIT_1G default 0xC0000000 depends on X86_32config HIGHMEM bool depends on X86_32 && (HIGHMEM64G || HIGHMEM4G) default yconfig X86_PAE bool "PAE (Physical Address Extension) Support" default n depends on X86_32 && !HIGHMEM4G select RESOURCES_64BIT help PAE is required for NX support, and furthermore enables larger swapspace support for non-overcommit purposes. It
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -