⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 smpboot_64.c

📁 linux 内核源代码
💻 C
📖 第 1 页 / 共 2 页
字号:
/* *	x86 SMP booting functions * *	(c) 1995 Alan Cox, Building #3 <alan@redhat.com> *	(c) 1998, 1999, 2000 Ingo Molnar <mingo@redhat.com> *	Copyright 2001 Andi Kleen, SuSE Labs. * *	Much of the core SMP work is based on previous work by Thomas Radke, to *	whom a great many thanks are extended. * *	Thanks to Intel for making available several different Pentium, *	Pentium Pro and Pentium-II/Xeon MP machines. *	Original development of Linux SMP code supported by Caldera. * *	This code is released under the GNU General Public License version 2 * *	Fixes *		Felix Koop	:	NR_CPUS used properly *		Jose Renau	:	Handle single CPU case. *		Alan Cox	:	By repeated request 8) - Total BogoMIP report. *		Greg Wright	:	Fix for kernel stacks panic. *		Erich Boleyn	:	MP v1.4 and additional changes. *	Matthias Sattler	:	Changes for 2.1 kernel map. *	Michel Lespinasse	:	Changes for 2.1 kernel map. *	Michael Chastain	:	Change trampoline.S to gnu as. *		Alan Cox	:	Dumb bug: 'B' step PPro's are fine *		Ingo Molnar	:	Added APIC timers, based on code *					from Jose Renau *		Ingo Molnar	:	various cleanups and rewrites *		Tigran Aivazian	:	fixed "0.00 in /proc/uptime on SMP" bug. *	Maciej W. Rozycki	:	Bits for genuine 82489DX APICs *	Andi Kleen		:	Changed for SMP boot into long mode. *		Rusty Russell	:	Hacked into shape for new "hotplug" boot process. *      Andi Kleen              :       Converted to new state machine. *					Various cleanups. *					Probably mostly hotplug CPU ready now. *	Ashok Raj			: CPU hotplug support */#include <linux/init.h>#include <linux/mm.h>#include <linux/kernel_stat.h>#include <linux/bootmem.h>#include <linux/thread_info.h>#include <linux/module.h>#include <linux/delay.h>#include <linux/mc146818rtc.h>#include <linux/smp.h>#include <linux/kdebug.h>#include <asm/mtrr.h>#include <asm/pgalloc.h>#include <asm/desc.h>#include <asm/tlbflush.h>#include <asm/proto.h>#include <asm/nmi.h>#include <asm/irq.h>#include <asm/hw_irq.h>#include <asm/numa.h>/* Number of siblings per CPU package */int smp_num_siblings = 1;EXPORT_SYMBOL(smp_num_siblings);/* Last level cache ID of each logical CPU */DEFINE_PER_CPU(u8, cpu_llc_id) = BAD_APICID;/* Bitmask of currently online CPUs */cpumask_t cpu_online_map __read_mostly;EXPORT_SYMBOL(cpu_online_map);/* * Private maps to synchronize booting between AP and BP. * Probably not needed anymore, but it makes for easier debugging. -AK */cpumask_t cpu_callin_map;cpumask_t cpu_callout_map;EXPORT_SYMBOL(cpu_callout_map);cpumask_t cpu_possible_map;EXPORT_SYMBOL(cpu_possible_map);/* Per CPU bogomips and other parameters */DEFINE_PER_CPU_SHARED_ALIGNED(struct cpuinfo_x86, cpu_info);EXPORT_PER_CPU_SYMBOL(cpu_info);/* Set when the idlers are all forked */int smp_threads_ready;/* representing HT siblings of each logical CPU */DEFINE_PER_CPU(cpumask_t, cpu_sibling_map);EXPORT_PER_CPU_SYMBOL(cpu_sibling_map);/* representing HT and core siblings of each logical CPU */DEFINE_PER_CPU(cpumask_t, cpu_core_map);EXPORT_PER_CPU_SYMBOL(cpu_core_map);/* * Trampoline 80x86 program as an array. */extern const unsigned char trampoline_data[];extern const unsigned char trampoline_end[];/* State of each CPU */DEFINE_PER_CPU(int, cpu_state) = { 0 };/* * Store all idle threads, this can be reused instead of creating * a new thread. Also avoids complicated thread destroy functionality * for idle threads. */struct task_struct *idle_thread_array[NR_CPUS] __cpuinitdata ;#define get_idle_for_cpu(x)     (idle_thread_array[(x)])#define set_idle_for_cpu(x,p)   (idle_thread_array[(x)] = (p))/* * Currently trivial. Write the real->protected mode * bootstrap into the page concerned. The caller * has made sure it's suitably aligned. */static unsigned long __cpuinit setup_trampoline(void){	void *tramp = __va(SMP_TRAMPOLINE_BASE); 	memcpy(tramp, trampoline_data, trampoline_end - trampoline_data);	return virt_to_phys(tramp);}/* * The bootstrap kernel entry code has set these up. Save them for * a given CPU */static void __cpuinit smp_store_cpu_info(int id){	struct cpuinfo_x86 *c = &cpu_data(id);	*c = boot_cpu_data;	c->cpu_index = id;	identify_cpu(c);	print_cpu_info(c);}static atomic_t init_deasserted __cpuinitdata;/* * Report back to the Boot Processor. * Running on AP. */void __cpuinit smp_callin(void){	int cpuid, phys_id;	unsigned long timeout;	/*	 * If waken up by an INIT in an 82489DX configuration	 * we may get here before an INIT-deassert IPI reaches	 * our local APIC.  We have to wait for the IPI or we'll	 * lock up on an APIC access.	 */	while (!atomic_read(&init_deasserted))		cpu_relax();	/*	 * (This works even if the APIC is not enabled.)	 */	phys_id = GET_APIC_ID(apic_read(APIC_ID));	cpuid = smp_processor_id();	if (cpu_isset(cpuid, cpu_callin_map)) {		panic("smp_callin: phys CPU#%d, CPU#%d already present??\n",					phys_id, cpuid);	}	Dprintk("CPU#%d (phys ID: %d) waiting for CALLOUT\n", cpuid, phys_id);	/*	 * STARTUP IPIs are fragile beasts as they might sometimes	 * trigger some glue motherboard logic. Complete APIC bus	 * silence for 1 second, this overestimates the time the	 * boot CPU is spending to send the up to 2 STARTUP IPIs	 * by a factor of two. This should be enough.	 */	/*	 * Waiting 2s total for startup (udelay is not yet working)	 */	timeout = jiffies + 2*HZ;	while (time_before(jiffies, timeout)) {		/*		 * Has the boot CPU finished it's STARTUP sequence?		 */		if (cpu_isset(cpuid, cpu_callout_map))			break;		cpu_relax();	}	if (!time_before(jiffies, timeout)) {		panic("smp_callin: CPU%d started up but did not get a callout!\n",			cpuid);	}	/*	 * the boot CPU has finished the init stage and is spinning	 * on callin_map until we finish. We are free to set up this	 * CPU, first the APIC. (this is probably redundant on most	 * boards)	 */	Dprintk("CALLIN, before setup_local_APIC().\n");	setup_local_APIC();	/*	 * Get our bogomips. 	 * 	 * Need to enable IRQs because it can take longer and then	 * the NMI watchdog might kill us.	 */	local_irq_enable();	calibrate_delay();	local_irq_disable();	Dprintk("Stack at about %p\n",&cpuid);	/*	 * Save our processor parameters	 */ 	smp_store_cpu_info(cpuid);	/*	 * Allow the master to continue.	 */	cpu_set(cpuid, cpu_callin_map);}/* maps the cpu to the sched domain representing multi-core */cpumask_t cpu_coregroup_map(int cpu){	struct cpuinfo_x86 *c = &cpu_data(cpu);	/*	 * For perf, we return last level cache shared map.	 * And for power savings, we return cpu_core_map	 */	if (sched_mc_power_savings || sched_smt_power_savings)		return per_cpu(cpu_core_map, cpu);	else		return c->llc_shared_map;}/* representing cpus for which sibling maps can be computed */static cpumask_t cpu_sibling_setup_map;static inline void set_cpu_sibling_map(int cpu){	int i;	struct cpuinfo_x86 *c = &cpu_data(cpu);	cpu_set(cpu, cpu_sibling_setup_map);	if (smp_num_siblings > 1) {		for_each_cpu_mask(i, cpu_sibling_setup_map) {			if (c->phys_proc_id == cpu_data(i).phys_proc_id &&			    c->cpu_core_id == cpu_data(i).cpu_core_id) {				cpu_set(i, per_cpu(cpu_sibling_map, cpu));				cpu_set(cpu, per_cpu(cpu_sibling_map, i));				cpu_set(i, per_cpu(cpu_core_map, cpu));				cpu_set(cpu, per_cpu(cpu_core_map, i));				cpu_set(i, c->llc_shared_map);				cpu_set(cpu, cpu_data(i).llc_shared_map);			}		}	} else {		cpu_set(cpu, per_cpu(cpu_sibling_map, cpu));	}	cpu_set(cpu, c->llc_shared_map);	if (current_cpu_data.x86_max_cores == 1) {		per_cpu(cpu_core_map, cpu) = per_cpu(cpu_sibling_map, cpu);		c->booted_cores = 1;		return;	}	for_each_cpu_mask(i, cpu_sibling_setup_map) {		if (per_cpu(cpu_llc_id, cpu) != BAD_APICID &&		    per_cpu(cpu_llc_id, cpu) == per_cpu(cpu_llc_id, i)) {			cpu_set(i, c->llc_shared_map);			cpu_set(cpu, cpu_data(i).llc_shared_map);		}		if (c->phys_proc_id == cpu_data(i).phys_proc_id) {			cpu_set(i, per_cpu(cpu_core_map, cpu));			cpu_set(cpu, per_cpu(cpu_core_map, i));			/*			 *  Does this new cpu bringup a new core?			 */			if (cpus_weight(per_cpu(cpu_sibling_map, cpu)) == 1) {				/*				 * for each core in package, increment				 * the booted_cores for this new cpu				 */				if (first_cpu(per_cpu(cpu_sibling_map, i)) == i)					c->booted_cores++;				/*				 * increment the core count for all				 * the other cpus in this package				 */				if (i != cpu)					cpu_data(i).booted_cores++;			} else if (i != cpu && !c->booted_cores)				c->booted_cores = cpu_data(i).booted_cores;		}	}}/* * Setup code on secondary processor (after comming out of the trampoline) */void __cpuinit start_secondary(void){	/*	 * Dont put anything before smp_callin(), SMP	 * booting is too fragile that we want to limit the	 * things done here to the most necessary things.	 */	cpu_init();	preempt_disable();	smp_callin();	/* otherwise gcc will move up the smp_processor_id before the cpu_init */	barrier();	/*  	 * Check TSC sync first: 	 */	check_tsc_sync_target();	if (nmi_watchdog == NMI_IO_APIC) {		disable_8259A_irq(0);		enable_NMI_through_LVT0(NULL);		enable_8259A_irq(0);	}	/*	 * The sibling maps must be set before turing the online map on for	 * this cpu	 */	set_cpu_sibling_map(smp_processor_id());	/*	 * We need to hold call_lock, so there is no inconsistency	 * between the time smp_call_function() determines number of	 * IPI recipients, and the time when the determination is made	 * for which cpus receive the IPI in genapic_flat.c. Holding this	 * lock helps us to not include this cpu in a currently in progress	 * smp_call_function().	 */	lock_ipi_call_lock();	spin_lock(&vector_lock);	/* Setup the per cpu irq handling data structures */	__setup_vector_irq(smp_processor_id());	/*	 * Allow the master to continue.	 */	cpu_set(smp_processor_id(), cpu_online_map);	per_cpu(cpu_state, smp_processor_id()) = CPU_ONLINE;	spin_unlock(&vector_lock);	unlock_ipi_call_lock();	setup_secondary_APIC_clock();	cpu_idle();}extern volatile unsigned long init_rsp;extern void (*initial_code)(void);#ifdef APIC_DEBUGstatic void inquire_remote_apic(int apicid){	unsigned i, regs[] = { APIC_ID >> 4, APIC_LVR >> 4, APIC_SPIV >> 4 };	char *names[] = { "ID", "VERSION", "SPIV" };	int timeout;	unsigned int status;	printk(KERN_INFO "Inquiring remote APIC #%d...\n", apicid);	for (i = 0; i < ARRAY_SIZE(regs); i++) {		printk("... APIC #%d %s: ", apicid, names[i]);		/*		 * Wait for idle.		 */		status = safe_apic_wait_icr_idle();		if (status)			printk("a previous APIC delivery may have failed\n");		apic_write(APIC_ICR2, SET_APIC_DEST_FIELD(apicid));		apic_write(APIC_ICR, APIC_DM_REMRD | regs[i]);		timeout = 0;		do {			udelay(100);			status = apic_read(APIC_ICR) & APIC_ICR_RR_MASK;		} while (status == APIC_ICR_RR_INPROG && timeout++ < 1000);		switch (status) {		case APIC_ICR_RR_VALID:			status = apic_read(APIC_RRR);			printk("%08x\n", status);			break;		default:			printk("failed\n");		}	}}#endif/* * Kick the secondary to wake up. */static int __cpuinit wakeup_secondary_via_INIT(int phys_apicid, unsigned int start_rip){	unsigned long send_status, accept_status = 0;	int maxlvt, num_starts, j;	Dprintk("Asserting INIT.\n");	/*	 * Turn INIT on target chip	 */	apic_write(APIC_ICR2, SET_APIC_DEST_FIELD(phys_apicid));	/*	 * Send IPI	 */	apic_write(APIC_ICR, APIC_INT_LEVELTRIG | APIC_INT_ASSERT				| APIC_DM_INIT);	Dprintk("Waiting for send to finish...\n");	send_status = safe_apic_wait_icr_idle();	mdelay(10);	Dprintk("Deasserting INIT.\n");	/* Target chip */	apic_write(APIC_ICR2, SET_APIC_DEST_FIELD(phys_apicid));	/* Send IPI */	apic_write(APIC_ICR, APIC_INT_LEVELTRIG | APIC_DM_INIT);	Dprintk("Waiting for send to finish...\n");	send_status = safe_apic_wait_icr_idle();	mb();	atomic_set(&init_deasserted, 1);	num_starts = 2;	/*	 * Run STARTUP IPI loop.	 */	Dprintk("#startup loops: %d.\n", num_starts);	maxlvt = get_maxlvt();	for (j = 1; j <= num_starts; j++) {		Dprintk("Sending STARTUP #%d.\n",j);		apic_write(APIC_ESR, 0);		apic_read(APIC_ESR);		Dprintk("After apic_write.\n");		/*		 * STARTUP IPI		 */		/* Target chip */		apic_write(APIC_ICR2, SET_APIC_DEST_FIELD(phys_apicid));		/* Boot on the stack */		/* Kick the second */		apic_write(APIC_ICR, APIC_DM_STARTUP | (start_rip >> 12));		/*		 * Give the other CPU some time to accept the IPI.		 */		udelay(300);		Dprintk("Startup point 1.\n");		Dprintk("Waiting for send to finish...\n");		send_status = safe_apic_wait_icr_idle();		/*		 * Give the other CPU some time to accept the IPI.		 */		udelay(200);		/*		 * Due to the Pentium erratum 3AP.		 */		if (maxlvt > 3) {			apic_write(APIC_ESR, 0);		}		accept_status = (apic_read(APIC_ESR) & 0xEF);		if (send_status || accept_status)			break;	}	Dprintk("After Startup.\n");	if (send_status)		printk(KERN_ERR "APIC never delivered???\n");	if (accept_status)		printk(KERN_ERR "APIC delivery error (%lx).\n", accept_status);	return (send_status | accept_status);}struct create_idle {	struct work_struct work;	struct task_struct *idle;	struct completion done;	int cpu;};static void __cpuinit do_fork_idle(struct work_struct *work){	struct create_idle *c_idle =		container_of(work, struct create_idle, work);	c_idle->idle = fork_idle(c_idle->cpu);	complete(&c_idle->done);}/* * Boot one CPU. */static int __cpuinit do_boot_cpu(int cpu, int apicid){	unsigned long boot_error;	int timeout;	unsigned long start_rip;	struct create_idle c_idle = {		.work = __WORK_INITIALIZER(c_idle.work, do_fork_idle),		.cpu = cpu,		.done = COMPLETION_INITIALIZER_ONSTACK(c_idle.done),	};

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -