📄 tsc_64.c
字号:
#include <linux/kernel.h>#include <linux/sched.h>#include <linux/interrupt.h>#include <linux/init.h>#include <linux/clocksource.h>#include <linux/time.h>#include <linux/acpi.h>#include <linux/cpufreq.h>#include <linux/acpi_pmtmr.h>#include <asm/hpet.h>#include <asm/timex.h>static int notsc __initdata = 0;unsigned int cpu_khz; /* TSC clocks / usec, not used here */EXPORT_SYMBOL(cpu_khz);unsigned int tsc_khz;EXPORT_SYMBOL(tsc_khz);static unsigned int cyc2ns_scale __read_mostly;static inline void set_cyc2ns_scale(unsigned long khz){ cyc2ns_scale = (NSEC_PER_MSEC << NS_SCALE) / khz;}static unsigned long long cycles_2_ns(unsigned long long cyc){ return (cyc * cyc2ns_scale) >> NS_SCALE;}unsigned long long sched_clock(void){ unsigned long a = 0; /* Could do CPU core sync here. Opteron can execute rdtsc speculatively, * which means it is not completely exact and may not be monotonous * between CPUs. But the errors should be too small to matter for * scheduling purposes. */ rdtscll(a); return cycles_2_ns(a);}static int tsc_unstable;inline int check_tsc_unstable(void){ return tsc_unstable;}#ifdef CONFIG_CPU_FREQ/* Frequency scaling support. Adjust the TSC based timer when the cpu frequency * changes. * * RED-PEN: On SMP we assume all CPUs run with the same frequency. It's * not that important because current Opteron setups do not support * scaling on SMP anyroads. * * Should fix up last_tsc too. Currently gettimeofday in the * first tick after the change will be slightly wrong. */static unsigned int ref_freq;static unsigned long loops_per_jiffy_ref;static unsigned long tsc_khz_ref;static int time_cpufreq_notifier(struct notifier_block *nb, unsigned long val, void *data){ struct cpufreq_freqs *freq = data; unsigned long *lpj, dummy; if (cpu_has(&cpu_data(freq->cpu), X86_FEATURE_CONSTANT_TSC)) return 0; lpj = &dummy; if (!(freq->flags & CPUFREQ_CONST_LOOPS))#ifdef CONFIG_SMP lpj = &cpu_data(freq->cpu).loops_per_jiffy;#else lpj = &boot_cpu_data.loops_per_jiffy;#endif if (!ref_freq) { ref_freq = freq->old; loops_per_jiffy_ref = *lpj; tsc_khz_ref = tsc_khz; } if ((val == CPUFREQ_PRECHANGE && freq->old < freq->new) || (val == CPUFREQ_POSTCHANGE && freq->old > freq->new) || (val == CPUFREQ_RESUMECHANGE)) { *lpj = cpufreq_scale(loops_per_jiffy_ref, ref_freq, freq->new); tsc_khz = cpufreq_scale(tsc_khz_ref, ref_freq, freq->new); if (!(freq->flags & CPUFREQ_CONST_LOOPS)) mark_tsc_unstable("cpufreq changes"); } set_cyc2ns_scale(tsc_khz_ref); return 0;}static struct notifier_block time_cpufreq_notifier_block = { .notifier_call = time_cpufreq_notifier};static int __init cpufreq_tsc(void){ cpufreq_register_notifier(&time_cpufreq_notifier_block, CPUFREQ_TRANSITION_NOTIFIER); return 0;}core_initcall(cpufreq_tsc);#endif#define MAX_RETRIES 5#define SMI_TRESHOLD 50000/* * Read TSC and the reference counters. Take care of SMI disturbance */static unsigned long __init tsc_read_refs(unsigned long *pm, unsigned long *hpet){ unsigned long t1, t2; int i; for (i = 0; i < MAX_RETRIES; i++) { t1 = get_cycles_sync(); if (hpet) *hpet = hpet_readl(HPET_COUNTER) & 0xFFFFFFFF; else *pm = acpi_pm_read_early(); t2 = get_cycles_sync(); if ((t2 - t1) < SMI_TRESHOLD) return t2; } return ULONG_MAX;}/** * tsc_calibrate - calibrate the tsc on boot */void __init tsc_calibrate(void){ unsigned long flags, tsc1, tsc2, tr1, tr2, pm1, pm2, hpet1, hpet2; int hpet = is_hpet_enabled(); local_irq_save(flags); tsc1 = tsc_read_refs(&pm1, hpet ? &hpet1 : NULL); outb((inb(0x61) & ~0x02) | 0x01, 0x61); outb(0xb0, 0x43); outb((CLOCK_TICK_RATE / (1000 / 50)) & 0xff, 0x42); outb((CLOCK_TICK_RATE / (1000 / 50)) >> 8, 0x42); tr1 = get_cycles_sync(); while ((inb(0x61) & 0x20) == 0); tr2 = get_cycles_sync(); tsc2 = tsc_read_refs(&pm2, hpet ? &hpet2 : NULL); local_irq_restore(flags); /* * Preset the result with the raw and inaccurate PIT * calibration value */ tsc_khz = (tr2 - tr1) / 50; /* hpet or pmtimer available ? */ if (!hpet && !pm1 && !pm2) { printk(KERN_INFO "TSC calibrated against PIT\n"); return; } /* Check, whether the sampling was disturbed by an SMI */ if (tsc1 == ULONG_MAX || tsc2 == ULONG_MAX) { printk(KERN_WARNING "TSC calibration disturbed by SMI, " "using PIT calibration result\n"); return; } tsc2 = (tsc2 - tsc1) * 1000000L; if (hpet) { printk(KERN_INFO "TSC calibrated against HPET\n"); if (hpet2 < hpet1) hpet2 += 0x100000000; hpet2 -= hpet1; tsc1 = (hpet2 * hpet_readl(HPET_PERIOD)) / 1000000; } else { printk(KERN_INFO "TSC calibrated against PM_TIMER\n"); if (pm2 < pm1) pm2 += ACPI_PM_OVRRUN; pm2 -= pm1; tsc1 = (pm2 * 1000000000) / PMTMR_TICKS_PER_SEC; } tsc_khz = tsc2 / tsc1; set_cyc2ns_scale(tsc_khz);}/* * Make an educated guess if the TSC is trustworthy and synchronized * over all CPUs. */__cpuinit int unsynchronized_tsc(void){ if (tsc_unstable) return 1;#ifdef CONFIG_SMP if (apic_is_clustered_box()) return 1;#endif /* Most intel systems have synchronized TSCs except for multi node systems */ if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL) {#ifdef CONFIG_ACPI /* But TSC doesn't tick in C3 so don't use it there */ if (acpi_gbl_FADT.header.length > 0 && acpi_gbl_FADT.C3latency < 1000) return 1;#endif return 0; } /* Assume multi socket systems are not synchronized */ return num_present_cpus() > 1;}int __init notsc_setup(char *s){ notsc = 1; return 1;}__setup("notsc", notsc_setup);/* clock source code: */static cycle_t read_tsc(void){ cycle_t ret = (cycle_t)get_cycles_sync(); return ret;}static cycle_t __vsyscall_fn vread_tsc(void){ cycle_t ret = (cycle_t)get_cycles_sync(); return ret;}static struct clocksource clocksource_tsc = { .name = "tsc", .rating = 300, .read = read_tsc, .mask = CLOCKSOURCE_MASK(64), .shift = 22, .flags = CLOCK_SOURCE_IS_CONTINUOUS | CLOCK_SOURCE_MUST_VERIFY, .vread = vread_tsc,};void mark_tsc_unstable(char *reason){ if (!tsc_unstable) { tsc_unstable = 1; printk("Marking TSC unstable due to %s\n", reason); /* Change only the rating, when not registered */ if (clocksource_tsc.mult) clocksource_change_rating(&clocksource_tsc, 0); else clocksource_tsc.rating = 0; }}EXPORT_SYMBOL_GPL(mark_tsc_unstable);void __init init_tsc_clocksource(void){ if (!notsc) { clocksource_tsc.mult = clocksource_khz2mult(tsc_khz, clocksource_tsc.shift); if (check_tsc_unstable()) clocksource_tsc.rating = 0; clocksource_register(&clocksource_tsc); }}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -