📄 kprobes_32.c
字号:
" popl %esi\n" " popl %edi\n" " popl %ebp\n" " popl %eax\n" /* skip eip, orig_eax, es, ds, fs */ " addl $20, %esp\n" " popf\n" " ret\n");}/* * Called from kretprobe_trampoline */fastcall void *__kprobes trampoline_handler(struct pt_regs *regs){ struct kretprobe_instance *ri = NULL; struct hlist_head *head, empty_rp; struct hlist_node *node, *tmp; unsigned long flags, orig_ret_address = 0; unsigned long trampoline_address =(unsigned long)&kretprobe_trampoline; INIT_HLIST_HEAD(&empty_rp); spin_lock_irqsave(&kretprobe_lock, flags); head = kretprobe_inst_table_head(current); /* fixup registers */ regs->xcs = __KERNEL_CS | get_kernel_rpl(); regs->eip = trampoline_address; regs->orig_eax = 0xffffffff; /* * It is possible to have multiple instances associated with a given * task either because an multiple functions in the call path * have a return probe installed on them, and/or more then one return * return probe was registered for a target function. * * We can handle this because: * - instances are always inserted at the head of the list * - when multiple return probes are registered for the same * function, the first instance's ret_addr will point to the * real return address, and all the rest will point to * kretprobe_trampoline */ hlist_for_each_entry_safe(ri, node, tmp, head, hlist) { if (ri->task != current) /* another task is sharing our hash bucket */ continue; if (ri->rp && ri->rp->handler){ __get_cpu_var(current_kprobe) = &ri->rp->kp; get_kprobe_ctlblk()->kprobe_status = KPROBE_HIT_ACTIVE; ri->rp->handler(ri, regs); __get_cpu_var(current_kprobe) = NULL; } orig_ret_address = (unsigned long)ri->ret_addr; recycle_rp_inst(ri, &empty_rp); if (orig_ret_address != trampoline_address) /* * This is the real return address. Any other * instances associated with this task are for * other calls deeper on the call stack */ break; } kretprobe_assert(ri, orig_ret_address, trampoline_address); spin_unlock_irqrestore(&kretprobe_lock, flags); hlist_for_each_entry_safe(ri, node, tmp, &empty_rp, hlist) { hlist_del(&ri->hlist); kfree(ri); } return (void*)orig_ret_address;}/* * Called after single-stepping. p->addr is the address of the * instruction whose first byte has been replaced by the "int 3" * instruction. To avoid the SMP problems that can occur when we * temporarily put back the original opcode to single-step, we * single-stepped a copy of the instruction. The address of this * copy is p->ainsn.insn. * * This function prepares to return from the post-single-step * interrupt. We have to fix up the stack as follows: * * 0) Except in the case of absolute or indirect jump or call instructions, * the new eip is relative to the copied instruction. We need to make * it relative to the original instruction. * * 1) If the single-stepped instruction was pushfl, then the TF and IF * flags are set in the just-pushed eflags, and may need to be cleared. * * 2) If the single-stepped instruction was a call, the return address * that is atop the stack is the address following the copied instruction. * We need to make it the address following the original instruction. * * This function also checks instruction size for preparing direct execution. */static void __kprobes resume_execution(struct kprobe *p, struct pt_regs *regs, struct kprobe_ctlblk *kcb){ unsigned long *tos = (unsigned long *)®s->esp; unsigned long copy_eip = (unsigned long)p->ainsn.insn; unsigned long orig_eip = (unsigned long)p->addr; regs->eflags &= ~TF_MASK; switch (p->ainsn.insn[0]) { case 0x9c: /* pushfl */ *tos &= ~(TF_MASK | IF_MASK); *tos |= kcb->kprobe_old_eflags; break; case 0xc2: /* iret/ret/lret */ case 0xc3: case 0xca: case 0xcb: case 0xcf: case 0xea: /* jmp absolute -- eip is correct */ /* eip is already adjusted, no more changes required */ p->ainsn.boostable = 1; goto no_change; case 0xe8: /* call relative - Fix return addr */ *tos = orig_eip + (*tos - copy_eip); break; case 0x9a: /* call absolute -- same as call absolute, indirect */ *tos = orig_eip + (*tos - copy_eip); goto no_change; case 0xff: if ((p->ainsn.insn[1] & 0x30) == 0x10) { /* * call absolute, indirect * Fix return addr; eip is correct. * But this is not boostable */ *tos = orig_eip + (*tos - copy_eip); goto no_change; } else if (((p->ainsn.insn[1] & 0x31) == 0x20) || /* jmp near, absolute indirect */ ((p->ainsn.insn[1] & 0x31) == 0x21)) { /* jmp far, absolute indirect */ /* eip is correct. And this is boostable */ p->ainsn.boostable = 1; goto no_change; } default: break; } if (p->ainsn.boostable == 0) { if ((regs->eip > copy_eip) && (regs->eip - copy_eip) + 5 < MAX_INSN_SIZE) { /* * These instructions can be executed directly if it * jumps back to correct address. */ set_jmp_op((void *)regs->eip, (void *)orig_eip + (regs->eip - copy_eip)); p->ainsn.boostable = 1; } else { p->ainsn.boostable = -1; } } regs->eip = orig_eip + (regs->eip - copy_eip);no_change: return;}/* * Interrupts are disabled on entry as trap1 is an interrupt gate and they * remain disabled thoroughout this function. */static int __kprobes post_kprobe_handler(struct pt_regs *regs){ struct kprobe *cur = kprobe_running(); struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); if (!cur) return 0; if ((kcb->kprobe_status != KPROBE_REENTER) && cur->post_handler) { kcb->kprobe_status = KPROBE_HIT_SSDONE; cur->post_handler(cur, regs, 0); } resume_execution(cur, regs, kcb); regs->eflags |= kcb->kprobe_saved_eflags; trace_hardirqs_fixup_flags(regs->eflags); /*Restore back the original saved kprobes variables and continue. */ if (kcb->kprobe_status == KPROBE_REENTER) { restore_previous_kprobe(kcb); goto out; } reset_current_kprobe();out: preempt_enable_no_resched(); /* * if somebody else is singlestepping across a probe point, eflags * will have TF set, in which case, continue the remaining processing * of do_debug, as if this is not a probe hit. */ if (regs->eflags & TF_MASK) return 0; return 1;}int __kprobes kprobe_fault_handler(struct pt_regs *regs, int trapnr){ struct kprobe *cur = kprobe_running(); struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); switch(kcb->kprobe_status) { case KPROBE_HIT_SS: case KPROBE_REENTER: /* * We are here because the instruction being single * stepped caused a page fault. We reset the current * kprobe and the eip points back to the probe address * and allow the page fault handler to continue as a * normal page fault. */ regs->eip = (unsigned long)cur->addr; regs->eflags |= kcb->kprobe_old_eflags; if (kcb->kprobe_status == KPROBE_REENTER) restore_previous_kprobe(kcb); else reset_current_kprobe(); preempt_enable_no_resched(); break; case KPROBE_HIT_ACTIVE: case KPROBE_HIT_SSDONE: /* * We increment the nmissed count for accounting, * we can also use npre/npostfault count for accouting * these specific fault cases. */ kprobes_inc_nmissed_count(cur); /* * We come here because instructions in the pre/post * handler caused the page_fault, this could happen * if handler tries to access user space by * copy_from_user(), get_user() etc. Let the * user-specified handler try to fix it first. */ if (cur->fault_handler && cur->fault_handler(cur, regs, trapnr)) return 1; /* * In case the user-specified fault handler returned * zero, try to fix up. */ if (fixup_exception(regs)) return 1; /* * fixup_exception() could not handle it, * Let do_page_fault() fix it. */ break; default: break; } return 0;}/* * Wrapper routine to for handling exceptions. */int __kprobes kprobe_exceptions_notify(struct notifier_block *self, unsigned long val, void *data){ struct die_args *args = (struct die_args *)data; int ret = NOTIFY_DONE; if (args->regs && user_mode_vm(args->regs)) return ret; switch (val) { case DIE_INT3: if (kprobe_handler(args->regs)) ret = NOTIFY_STOP; break; case DIE_DEBUG: if (post_kprobe_handler(args->regs)) ret = NOTIFY_STOP; break; case DIE_GPF: /* kprobe_running() needs smp_processor_id() */ preempt_disable(); if (kprobe_running() && kprobe_fault_handler(args->regs, args->trapnr)) ret = NOTIFY_STOP; preempt_enable(); break; default: break; } return ret;}int __kprobes setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs){ struct jprobe *jp = container_of(p, struct jprobe, kp); unsigned long addr; struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); kcb->jprobe_saved_regs = *regs; kcb->jprobe_saved_esp = ®s->esp; addr = (unsigned long)(kcb->jprobe_saved_esp); /* * TBD: As Linus pointed out, gcc assumes that the callee * owns the argument space and could overwrite it, e.g. * tailcall optimization. So, to be absolutely safe * we also save and restore enough stack bytes to cover * the argument area. */ memcpy(kcb->jprobes_stack, (kprobe_opcode_t *)addr, MIN_STACK_SIZE(addr)); regs->eflags &= ~IF_MASK; trace_hardirqs_off(); regs->eip = (unsigned long)(jp->entry); return 1;}void __kprobes jprobe_return(void){ struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); asm volatile (" xchgl %%ebx,%%esp \n" " int3 \n" " .globl jprobe_return_end \n" " jprobe_return_end: \n" " nop \n"::"b" (kcb->jprobe_saved_esp):"memory");}int __kprobes longjmp_break_handler(struct kprobe *p, struct pt_regs *regs){ struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); u8 *addr = (u8 *) (regs->eip - 1); unsigned long stack_addr = (unsigned long)(kcb->jprobe_saved_esp); struct jprobe *jp = container_of(p, struct jprobe, kp); if ((addr > (u8 *) jprobe_return) && (addr < (u8 *) jprobe_return_end)) { if (®s->esp != kcb->jprobe_saved_esp) { struct pt_regs *saved_regs = &kcb->jprobe_saved_regs; printk("current esp %p does not match saved esp %p\n", ®s->esp, kcb->jprobe_saved_esp); printk("Saved registers for jprobe %p\n", jp); show_registers(saved_regs); printk("Current registers\n"); show_registers(regs); BUG(); } *regs = kcb->jprobe_saved_regs; memcpy((kprobe_opcode_t *) stack_addr, kcb->jprobes_stack, MIN_STACK_SIZE(stack_addr)); preempt_enable_no_resched(); return 1; } return 0;}int __kprobes arch_trampoline_kprobe(struct kprobe *p){ return 0;}int __init arch_init_kprobes(void){ return 0;}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -