⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 acpi-cpufreq.c

📁 linux 内核源代码
💻 C
📖 第 1 页 / 共 2 页
字号:
#else	online_policy_cpus = policy->cpus;#endif	next_perf_state = data->freq_table[next_state].index;	if (perf->state == next_perf_state) {		if (unlikely(data->resume)) {			dprintk("Called after resume, resetting to P%d\n",				next_perf_state);			data->resume = 0;		} else {			dprintk("Already at target state (P%d)\n",				next_perf_state);			return 0;		}	}	switch (data->cpu_feature) {	case SYSTEM_INTEL_MSR_CAPABLE:		cmd.type = SYSTEM_INTEL_MSR_CAPABLE;		cmd.addr.msr.reg = MSR_IA32_PERF_CTL;		cmd.val = (u32) perf->states[next_perf_state].control;		break;	case SYSTEM_IO_CAPABLE:		cmd.type = SYSTEM_IO_CAPABLE;		cmd.addr.io.port = perf->control_register.address;		cmd.addr.io.bit_width = perf->control_register.bit_width;		cmd.val = (u32) perf->states[next_perf_state].control;		break;	default:		return -ENODEV;	}	cpus_clear(cmd.mask);	if (policy->shared_type != CPUFREQ_SHARED_TYPE_ANY)		cmd.mask = online_policy_cpus;	else		cpu_set(policy->cpu, cmd.mask);	freqs.old = perf->states[perf->state].core_frequency * 1000;	freqs.new = data->freq_table[next_state].frequency;	for_each_cpu_mask(i, cmd.mask) {		freqs.cpu = i;		cpufreq_notify_transition(&freqs, CPUFREQ_PRECHANGE);	}	drv_write(&cmd);	if (acpi_pstate_strict) {		if (!check_freqs(cmd.mask, freqs.new, data)) {			dprintk("acpi_cpufreq_target failed (%d)\n",				policy->cpu);			return -EAGAIN;		}	}	for_each_cpu_mask(i, cmd.mask) {		freqs.cpu = i;		cpufreq_notify_transition(&freqs, CPUFREQ_POSTCHANGE);	}	perf->state = next_perf_state;	return result;}static int acpi_cpufreq_verify(struct cpufreq_policy *policy){	struct acpi_cpufreq_data *data = drv_data[policy->cpu];	dprintk("acpi_cpufreq_verify\n");	return cpufreq_frequency_table_verify(policy, data->freq_table);}static unsigned longacpi_cpufreq_guess_freq(struct acpi_cpufreq_data *data, unsigned int cpu){	struct acpi_processor_performance *perf = data->acpi_data;	if (cpu_khz) {		/* search the closest match to cpu_khz */		unsigned int i;		unsigned long freq;		unsigned long freqn = perf->states[0].core_frequency * 1000;		for (i=0; i<(perf->state_count-1); i++) {			freq = freqn;			freqn = perf->states[i+1].core_frequency * 1000;			if ((2 * cpu_khz) > (freqn + freq)) {				perf->state = i;				return freq;			}		}		perf->state = perf->state_count-1;		return freqn;	} else {		/* assume CPU is at P0... */		perf->state = 0;		return perf->states[0].core_frequency * 1000;	}}/* * acpi_cpufreq_early_init - initialize ACPI P-States library * * Initialize the ACPI P-States library (drivers/acpi/processor_perflib.c) * in order to determine correct frequency and voltage pairings. We can * do _PDC and _PSD and find out the processor dependency for the * actual init that will happen later... */static int __init acpi_cpufreq_early_init(void){	dprintk("acpi_cpufreq_early_init\n");	acpi_perf_data = alloc_percpu(struct acpi_processor_performance);	if (!acpi_perf_data) {		dprintk("Memory allocation error for acpi_perf_data.\n");		return -ENOMEM;	}	/* Do initialization in ACPI core */	acpi_processor_preregister_performance(acpi_perf_data);	return 0;}#ifdef CONFIG_SMP/* * Some BIOSes do SW_ANY coordination internally, either set it up in hw * or do it in BIOS firmware and won't inform about it to OS. If not * detected, this has a side effect of making CPU run at a different speed * than OS intended it to run at. Detect it and handle it cleanly. */static int bios_with_sw_any_bug;static int sw_any_bug_found(const struct dmi_system_id *d){	bios_with_sw_any_bug = 1;	return 0;}static const struct dmi_system_id sw_any_bug_dmi_table[] = {	{		.callback = sw_any_bug_found,		.ident = "Supermicro Server X6DLP",		.matches = {			DMI_MATCH(DMI_SYS_VENDOR, "Supermicro"),			DMI_MATCH(DMI_BIOS_VERSION, "080010"),			DMI_MATCH(DMI_PRODUCT_NAME, "X6DLP"),		},	},	{ }};#endifstatic int acpi_cpufreq_cpu_init(struct cpufreq_policy *policy){	unsigned int i;	unsigned int valid_states = 0;	unsigned int cpu = policy->cpu;	struct acpi_cpufreq_data *data;	unsigned int result = 0;	struct cpuinfo_x86 *c = &cpu_data(policy->cpu);	struct acpi_processor_performance *perf;	dprintk("acpi_cpufreq_cpu_init\n");	data = kzalloc(sizeof(struct acpi_cpufreq_data), GFP_KERNEL);	if (!data)		return -ENOMEM;	data->acpi_data = percpu_ptr(acpi_perf_data, cpu);	drv_data[cpu] = data;	if (cpu_has(c, X86_FEATURE_CONSTANT_TSC))		acpi_cpufreq_driver.flags |= CPUFREQ_CONST_LOOPS;	result = acpi_processor_register_performance(data->acpi_data, cpu);	if (result)		goto err_free;	perf = data->acpi_data;	policy->shared_type = perf->shared_type;	/*	 * Will let policy->cpus know about dependency only when software	 * coordination is required.	 */	if (policy->shared_type == CPUFREQ_SHARED_TYPE_ALL ||	    policy->shared_type == CPUFREQ_SHARED_TYPE_ANY) {		policy->cpus = perf->shared_cpu_map;	}#ifdef CONFIG_SMP	dmi_check_system(sw_any_bug_dmi_table);	if (bios_with_sw_any_bug && cpus_weight(policy->cpus) == 1) {		policy->shared_type = CPUFREQ_SHARED_TYPE_ALL;		policy->cpus = per_cpu(cpu_core_map, cpu);	}#endif	/* capability check */	if (perf->state_count <= 1) {		dprintk("No P-States\n");		result = -ENODEV;		goto err_unreg;	}	if (perf->control_register.space_id != perf->status_register.space_id) {		result = -ENODEV;		goto err_unreg;	}	switch (perf->control_register.space_id) {	case ACPI_ADR_SPACE_SYSTEM_IO:		dprintk("SYSTEM IO addr space\n");		data->cpu_feature = SYSTEM_IO_CAPABLE;		break;	case ACPI_ADR_SPACE_FIXED_HARDWARE:		dprintk("HARDWARE addr space\n");		if (!check_est_cpu(cpu)) {			result = -ENODEV;			goto err_unreg;		}		data->cpu_feature = SYSTEM_INTEL_MSR_CAPABLE;		break;	default:		dprintk("Unknown addr space %d\n",			(u32) (perf->control_register.space_id));		result = -ENODEV;		goto err_unreg;	}	data->freq_table = kmalloc(sizeof(struct cpufreq_frequency_table) *		    (perf->state_count+1), GFP_KERNEL);	if (!data->freq_table) {		result = -ENOMEM;		goto err_unreg;	}	/* detect transition latency */	policy->cpuinfo.transition_latency = 0;	for (i=0; i<perf->state_count; i++) {		if ((perf->states[i].transition_latency * 1000) >		    policy->cpuinfo.transition_latency)			policy->cpuinfo.transition_latency =			    perf->states[i].transition_latency * 1000;	}	data->max_freq = perf->states[0].core_frequency * 1000;	/* table init */	for (i=0; i<perf->state_count; i++) {		if (i>0 && perf->states[i].core_frequency >=		    data->freq_table[valid_states-1].frequency / 1000)			continue;		data->freq_table[valid_states].index = i;		data->freq_table[valid_states].frequency =		    perf->states[i].core_frequency * 1000;		valid_states++;	}	data->freq_table[valid_states].frequency = CPUFREQ_TABLE_END;	perf->state = 0;	result = cpufreq_frequency_table_cpuinfo(policy, data->freq_table);	if (result)		goto err_freqfree;	switch (perf->control_register.space_id) {	case ACPI_ADR_SPACE_SYSTEM_IO:		/* Current speed is unknown and not detectable by IO port */		policy->cur = acpi_cpufreq_guess_freq(data, policy->cpu);		break;	case ACPI_ADR_SPACE_FIXED_HARDWARE:		acpi_cpufreq_driver.get = get_cur_freq_on_cpu;		policy->cur = get_cur_freq_on_cpu(cpu);		break;	default:		break;	}	/* notify BIOS that we exist */	acpi_processor_notify_smm(THIS_MODULE);	/* Check for APERF/MPERF support in hardware */	if (c->x86_vendor == X86_VENDOR_INTEL && c->cpuid_level >= 6) {		unsigned int ecx;		ecx = cpuid_ecx(6);		if (ecx & CPUID_6_ECX_APERFMPERF_CAPABILITY)			acpi_cpufreq_driver.getavg = get_measured_perf;	}	dprintk("CPU%u - ACPI performance management activated.\n", cpu);	for (i = 0; i < perf->state_count; i++)		dprintk("     %cP%d: %d MHz, %d mW, %d uS\n",			(i == perf->state ? '*' : ' '), i,			(u32) perf->states[i].core_frequency,			(u32) perf->states[i].power,			(u32) perf->states[i].transition_latency);	cpufreq_frequency_table_get_attr(data->freq_table, policy->cpu);	/*	 * the first call to ->target() should result in us actually	 * writing something to the appropriate registers.	 */	data->resume = 1;	return result;err_freqfree:	kfree(data->freq_table);err_unreg:	acpi_processor_unregister_performance(perf, cpu);err_free:	kfree(data);	drv_data[cpu] = NULL;	return result;}static int acpi_cpufreq_cpu_exit(struct cpufreq_policy *policy){	struct acpi_cpufreq_data *data = drv_data[policy->cpu];	dprintk("acpi_cpufreq_cpu_exit\n");	if (data) {		cpufreq_frequency_table_put_attr(policy->cpu);		drv_data[policy->cpu] = NULL;		acpi_processor_unregister_performance(data->acpi_data,						      policy->cpu);		kfree(data);	}	return 0;}static int acpi_cpufreq_resume(struct cpufreq_policy *policy){	struct acpi_cpufreq_data *data = drv_data[policy->cpu];	dprintk("acpi_cpufreq_resume\n");	data->resume = 1;	return 0;}static struct freq_attr *acpi_cpufreq_attr[] = {	&cpufreq_freq_attr_scaling_available_freqs,	NULL,};static struct cpufreq_driver acpi_cpufreq_driver = {	.verify = acpi_cpufreq_verify,	.target = acpi_cpufreq_target,	.init = acpi_cpufreq_cpu_init,	.exit = acpi_cpufreq_cpu_exit,	.resume = acpi_cpufreq_resume,	.name = "acpi-cpufreq",	.owner = THIS_MODULE,	.attr = acpi_cpufreq_attr,};static int __init acpi_cpufreq_init(void){	int ret;	dprintk("acpi_cpufreq_init\n");	ret = acpi_cpufreq_early_init();	if (ret)		return ret;	return cpufreq_register_driver(&acpi_cpufreq_driver);}static void __exit acpi_cpufreq_exit(void){	dprintk("acpi_cpufreq_exit\n");	cpufreq_unregister_driver(&acpi_cpufreq_driver);	free_percpu(acpi_perf_data);	return;}module_param(acpi_pstate_strict, uint, 0644);MODULE_PARM_DESC(acpi_pstate_strict,	"value 0 or non-zero. non-zero -> strict ACPI checks are "	"performed during frequency changes.");late_initcall(acpi_cpufreq_init);module_exit(acpi_cpufreq_exit);MODULE_ALIAS("acpi");

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -