📄 kprobes_64.c
字号:
return 1;no_kprobe: preempt_enable_no_resched(); return ret;}/* * For function-return probes, init_kprobes() establishes a probepoint * here. When a retprobed function returns, this probe is hit and * trampoline_probe_handler() runs, calling the kretprobe's handler. */ void kretprobe_trampoline_holder(void) { asm volatile ( ".global kretprobe_trampoline\n" "kretprobe_trampoline: \n" "nop\n"); }/* * Called when we hit the probe point at kretprobe_trampoline */int __kprobes trampoline_probe_handler(struct kprobe *p, struct pt_regs *regs){ struct kretprobe_instance *ri = NULL; struct hlist_head *head, empty_rp; struct hlist_node *node, *tmp; unsigned long flags, orig_ret_address = 0; unsigned long trampoline_address =(unsigned long)&kretprobe_trampoline; INIT_HLIST_HEAD(&empty_rp); spin_lock_irqsave(&kretprobe_lock, flags); head = kretprobe_inst_table_head(current); /* * It is possible to have multiple instances associated with a given * task either because an multiple functions in the call path * have a return probe installed on them, and/or more then one return * return probe was registered for a target function. * * We can handle this because: * - instances are always inserted at the head of the list * - when multiple return probes are registered for the same * function, the first instance's ret_addr will point to the * real return address, and all the rest will point to * kretprobe_trampoline */ hlist_for_each_entry_safe(ri, node, tmp, head, hlist) { if (ri->task != current) /* another task is sharing our hash bucket */ continue; if (ri->rp && ri->rp->handler) ri->rp->handler(ri, regs); orig_ret_address = (unsigned long)ri->ret_addr; recycle_rp_inst(ri, &empty_rp); if (orig_ret_address != trampoline_address) /* * This is the real return address. Any other * instances associated with this task are for * other calls deeper on the call stack */ break; } kretprobe_assert(ri, orig_ret_address, trampoline_address); regs->rip = orig_ret_address; reset_current_kprobe(); spin_unlock_irqrestore(&kretprobe_lock, flags); preempt_enable_no_resched(); hlist_for_each_entry_safe(ri, node, tmp, &empty_rp, hlist) { hlist_del(&ri->hlist); kfree(ri); } /* * By returning a non-zero value, we are telling * kprobe_handler() that we don't want the post_handler * to run (and have re-enabled preemption) */ return 1;}/* * Called after single-stepping. p->addr is the address of the * instruction whose first byte has been replaced by the "int 3" * instruction. To avoid the SMP problems that can occur when we * temporarily put back the original opcode to single-step, we * single-stepped a copy of the instruction. The address of this * copy is p->ainsn.insn. * * This function prepares to return from the post-single-step * interrupt. We have to fix up the stack as follows: * * 0) Except in the case of absolute or indirect jump or call instructions, * the new rip is relative to the copied instruction. We need to make * it relative to the original instruction. * * 1) If the single-stepped instruction was pushfl, then the TF and IF * flags are set in the just-pushed eflags, and may need to be cleared. * * 2) If the single-stepped instruction was a call, the return address * that is atop the stack is the address following the copied instruction. * We need to make it the address following the original instruction. */static void __kprobes resume_execution(struct kprobe *p, struct pt_regs *regs, struct kprobe_ctlblk *kcb){ unsigned long *tos = (unsigned long *)regs->rsp; unsigned long copy_rip = (unsigned long)p->ainsn.insn; unsigned long orig_rip = (unsigned long)p->addr; kprobe_opcode_t *insn = p->ainsn.insn; /*skip the REX prefix*/ if (*insn >= 0x40 && *insn <= 0x4f) insn++; regs->eflags &= ~TF_MASK; switch (*insn) { case 0x9c: /* pushfl */ *tos &= ~(TF_MASK | IF_MASK); *tos |= kcb->kprobe_old_rflags; break; case 0xc2: /* iret/ret/lret */ case 0xc3: case 0xca: case 0xcb: case 0xcf: case 0xea: /* jmp absolute -- ip is correct */ /* ip is already adjusted, no more changes required */ goto no_change; case 0xe8: /* call relative - Fix return addr */ *tos = orig_rip + (*tos - copy_rip); break; case 0xff: if ((insn[1] & 0x30) == 0x10) { /* call absolute, indirect */ /* Fix return addr; ip is correct. */ *tos = orig_rip + (*tos - copy_rip); goto no_change; } else if (((insn[1] & 0x31) == 0x20) || /* jmp near, absolute indirect */ ((insn[1] & 0x31) == 0x21)) { /* jmp far, absolute indirect */ /* ip is correct. */ goto no_change; } default: break; } regs->rip = orig_rip + (regs->rip - copy_rip);no_change: return;}int __kprobes post_kprobe_handler(struct pt_regs *regs){ struct kprobe *cur = kprobe_running(); struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); if (!cur) return 0; if ((kcb->kprobe_status != KPROBE_REENTER) && cur->post_handler) { kcb->kprobe_status = KPROBE_HIT_SSDONE; cur->post_handler(cur, regs, 0); } resume_execution(cur, regs, kcb); regs->eflags |= kcb->kprobe_saved_rflags; trace_hardirqs_fixup_flags(regs->eflags); /* Restore the original saved kprobes variables and continue. */ if (kcb->kprobe_status == KPROBE_REENTER) { restore_previous_kprobe(kcb); goto out; } reset_current_kprobe();out: preempt_enable_no_resched(); /* * if somebody else is singlestepping across a probe point, eflags * will have TF set, in which case, continue the remaining processing * of do_debug, as if this is not a probe hit. */ if (regs->eflags & TF_MASK) return 0; return 1;}int __kprobes kprobe_fault_handler(struct pt_regs *regs, int trapnr){ struct kprobe *cur = kprobe_running(); struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); const struct exception_table_entry *fixup; switch(kcb->kprobe_status) { case KPROBE_HIT_SS: case KPROBE_REENTER: /* * We are here because the instruction being single * stepped caused a page fault. We reset the current * kprobe and the rip points back to the probe address * and allow the page fault handler to continue as a * normal page fault. */ regs->rip = (unsigned long)cur->addr; regs->eflags |= kcb->kprobe_old_rflags; if (kcb->kprobe_status == KPROBE_REENTER) restore_previous_kprobe(kcb); else reset_current_kprobe(); preempt_enable_no_resched(); break; case KPROBE_HIT_ACTIVE: case KPROBE_HIT_SSDONE: /* * We increment the nmissed count for accounting, * we can also use npre/npostfault count for accouting * these specific fault cases. */ kprobes_inc_nmissed_count(cur); /* * We come here because instructions in the pre/post * handler caused the page_fault, this could happen * if handler tries to access user space by * copy_from_user(), get_user() etc. Let the * user-specified handler try to fix it first. */ if (cur->fault_handler && cur->fault_handler(cur, regs, trapnr)) return 1; /* * In case the user-specified fault handler returned * zero, try to fix up. */ fixup = search_exception_tables(regs->rip); if (fixup) { regs->rip = fixup->fixup; return 1; } /* * fixup() could not handle it, * Let do_page_fault() fix it. */ break; default: break; } return 0;}/* * Wrapper routine for handling exceptions. */int __kprobes kprobe_exceptions_notify(struct notifier_block *self, unsigned long val, void *data){ struct die_args *args = (struct die_args *)data; int ret = NOTIFY_DONE; if (args->regs && user_mode(args->regs)) return ret; switch (val) { case DIE_INT3: if (kprobe_handler(args->regs)) ret = NOTIFY_STOP; break; case DIE_DEBUG: if (post_kprobe_handler(args->regs)) ret = NOTIFY_STOP; break; case DIE_GPF: /* kprobe_running() needs smp_processor_id() */ preempt_disable(); if (kprobe_running() && kprobe_fault_handler(args->regs, args->trapnr)) ret = NOTIFY_STOP; preempt_enable(); break; default: break; } return ret;}int __kprobes setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs){ struct jprobe *jp = container_of(p, struct jprobe, kp); unsigned long addr; struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); kcb->jprobe_saved_regs = *regs; kcb->jprobe_saved_rsp = (long *) regs->rsp; addr = (unsigned long)(kcb->jprobe_saved_rsp); /* * As Linus pointed out, gcc assumes that the callee * owns the argument space and could overwrite it, e.g. * tailcall optimization. So, to be absolutely safe * we also save and restore enough stack bytes to cover * the argument area. */ memcpy(kcb->jprobes_stack, (kprobe_opcode_t *)addr, MIN_STACK_SIZE(addr)); regs->eflags &= ~IF_MASK; trace_hardirqs_off(); regs->rip = (unsigned long)(jp->entry); return 1;}void __kprobes jprobe_return(void){ struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); asm volatile (" xchg %%rbx,%%rsp \n" " int3 \n" " .globl jprobe_return_end \n" " jprobe_return_end: \n" " nop \n"::"b" (kcb->jprobe_saved_rsp):"memory");}int __kprobes longjmp_break_handler(struct kprobe *p, struct pt_regs *regs){ struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); u8 *addr = (u8 *) (regs->rip - 1); unsigned long stack_addr = (unsigned long)(kcb->jprobe_saved_rsp); struct jprobe *jp = container_of(p, struct jprobe, kp); if ((addr > (u8 *) jprobe_return) && (addr < (u8 *) jprobe_return_end)) { if ((unsigned long *)regs->rsp != kcb->jprobe_saved_rsp) { struct pt_regs *saved_regs = &kcb->jprobe_saved_regs; printk("current rsp %p does not match saved rsp %p\n", (long *)regs->rsp, kcb->jprobe_saved_rsp); printk("Saved registers for jprobe %p\n", jp); show_registers(saved_regs); printk("Current registers\n"); show_registers(regs); BUG(); } *regs = kcb->jprobe_saved_regs; memcpy((kprobe_opcode_t *) stack_addr, kcb->jprobes_stack, MIN_STACK_SIZE(stack_addr)); preempt_enable_no_resched(); return 1; } return 0;}static struct kprobe trampoline_p = { .addr = (kprobe_opcode_t *) &kretprobe_trampoline, .pre_handler = trampoline_probe_handler};int __init arch_init_kprobes(void){ return register_kprobe(&trampoline_p);}int __kprobes arch_trampoline_kprobe(struct kprobe *p){ if (p->addr == (kprobe_opcode_t *)&kretprobe_trampoline) return 1; return 0;}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -