📄 kprobes_64.c
字号:
/* * Kernel Probes (KProbes) * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. * * Copyright (C) IBM Corporation, 2002, 2004 * * 2002-Oct Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel * Probes initial implementation ( includes contributions from * Rusty Russell). * 2004-July Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes * interface to access function arguments. * 2004-Oct Jim Keniston <kenistoj@us.ibm.com> and Prasanna S Panchamukhi * <prasanna@in.ibm.com> adapted for x86_64 * 2005-Mar Roland McGrath <roland@redhat.com> * Fixed to handle %rip-relative addressing mode correctly. * 2005-May Rusty Lynch <rusty.lynch@intel.com> * Added function return probes functionality */#include <linux/kprobes.h>#include <linux/ptrace.h>#include <linux/string.h>#include <linux/slab.h>#include <linux/preempt.h>#include <linux/module.h>#include <linux/kdebug.h>#include <asm/pgtable.h>#include <asm/uaccess.h>#include <asm/alternative.h>void jprobe_return_end(void);static void __kprobes arch_copy_kprobe(struct kprobe *p);DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL;DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);struct kretprobe_blackpoint kretprobe_blacklist[] = { {"__switch_to", }, /* This function switches only current task, but doesn't switch kernel stack.*/ {NULL, NULL} /* Terminator */};const int kretprobe_blacklist_size = ARRAY_SIZE(kretprobe_blacklist);/* * returns non-zero if opcode modifies the interrupt flag. */static int __kprobes is_IF_modifier(kprobe_opcode_t *insn){ switch (*insn) { case 0xfa: /* cli */ case 0xfb: /* sti */ case 0xcf: /* iret/iretd */ case 0x9d: /* popf/popfd */ return 1; } if (*insn >= 0x40 && *insn <= 0x4f && *++insn == 0xcf) return 1; return 0;}int __kprobes arch_prepare_kprobe(struct kprobe *p){ /* insn: must be on special executable page on x86_64. */ p->ainsn.insn = get_insn_slot(); if (!p->ainsn.insn) { return -ENOMEM; } arch_copy_kprobe(p); return 0;}/* * Determine if the instruction uses the %rip-relative addressing mode. * If it does, return the address of the 32-bit displacement word. * If not, return null. */static s32 __kprobes *is_riprel(u8 *insn){#define W(row,b0,b1,b2,b3,b4,b5,b6,b7,b8,b9,ba,bb,bc,bd,be,bf) \ (((b0##UL << 0x0)|(b1##UL << 0x1)|(b2##UL << 0x2)|(b3##UL << 0x3) | \ (b4##UL << 0x4)|(b5##UL << 0x5)|(b6##UL << 0x6)|(b7##UL << 0x7) | \ (b8##UL << 0x8)|(b9##UL << 0x9)|(ba##UL << 0xa)|(bb##UL << 0xb) | \ (bc##UL << 0xc)|(bd##UL << 0xd)|(be##UL << 0xe)|(bf##UL << 0xf)) \ << (row % 64)) static const u64 onebyte_has_modrm[256 / 64] = { /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */ /* ------------------------------- */ W(0x00, 1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0)| /* 00 */ W(0x10, 1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0)| /* 10 */ W(0x20, 1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0)| /* 20 */ W(0x30, 1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0), /* 30 */ W(0x40, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)| /* 40 */ W(0x50, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)| /* 50 */ W(0x60, 0,0,1,1,0,0,0,0,0,1,0,1,0,0,0,0)| /* 60 */ W(0x70, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0), /* 70 */ W(0x80, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)| /* 80 */ W(0x90, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)| /* 90 */ W(0xa0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)| /* a0 */ W(0xb0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0), /* b0 */ W(0xc0, 1,1,0,0,1,1,1,1,0,0,0,0,0,0,0,0)| /* c0 */ W(0xd0, 1,1,1,1,0,0,0,0,1,1,1,1,1,1,1,1)| /* d0 */ W(0xe0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)| /* e0 */ W(0xf0, 0,0,0,0,0,0,1,1,0,0,0,0,0,0,1,1) /* f0 */ /* ------------------------------- */ /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */ }; static const u64 twobyte_has_modrm[256 / 64] = { /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */ /* ------------------------------- */ W(0x00, 1,1,1,1,0,0,0,0,0,0,0,0,0,1,0,1)| /* 0f */ W(0x10, 1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0)| /* 1f */ W(0x20, 1,1,1,1,1,0,1,0,1,1,1,1,1,1,1,1)| /* 2f */ W(0x30, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0), /* 3f */ W(0x40, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)| /* 4f */ W(0x50, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)| /* 5f */ W(0x60, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)| /* 6f */ W(0x70, 1,1,1,1,1,1,1,0,0,0,0,0,1,1,1,1), /* 7f */ W(0x80, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)| /* 8f */ W(0x90, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)| /* 9f */ W(0xa0, 0,0,0,1,1,1,1,1,0,0,0,1,1,1,1,1)| /* af */ W(0xb0, 1,1,1,1,1,1,1,1,0,0,1,1,1,1,1,1), /* bf */ W(0xc0, 1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0)| /* cf */ W(0xd0, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)| /* df */ W(0xe0, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)| /* ef */ W(0xf0, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0) /* ff */ /* ------------------------------- */ /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */ };#undef W int need_modrm; /* Skip legacy instruction prefixes. */ while (1) { switch (*insn) { case 0x66: case 0x67: case 0x2e: case 0x3e: case 0x26: case 0x64: case 0x65: case 0x36: case 0xf0: case 0xf3: case 0xf2: ++insn; continue; } break; } /* Skip REX instruction prefix. */ if ((*insn & 0xf0) == 0x40) ++insn; if (*insn == 0x0f) { /* Two-byte opcode. */ ++insn; need_modrm = test_bit(*insn, twobyte_has_modrm); } else { /* One-byte opcode. */ need_modrm = test_bit(*insn, onebyte_has_modrm); } if (need_modrm) { u8 modrm = *++insn; if ((modrm & 0xc7) == 0x05) { /* %rip+disp32 addressing mode */ /* Displacement follows ModRM byte. */ return (s32 *) ++insn; } } /* No %rip-relative addressing mode here. */ return NULL;}static void __kprobes arch_copy_kprobe(struct kprobe *p){ s32 *ripdisp; memcpy(p->ainsn.insn, p->addr, MAX_INSN_SIZE); ripdisp = is_riprel(p->ainsn.insn); if (ripdisp) { /* * The copied instruction uses the %rip-relative * addressing mode. Adjust the displacement for the * difference between the original location of this * instruction and the location of the copy that will * actually be run. The tricky bit here is making sure * that the sign extension happens correctly in this * calculation, since we need a signed 32-bit result to * be sign-extended to 64 bits when it's added to the * %rip value and yield the same 64-bit result that the * sign-extension of the original signed 32-bit * displacement would have given. */ s64 disp = (u8 *) p->addr + *ripdisp - (u8 *) p->ainsn.insn; BUG_ON((s64) (s32) disp != disp); /* Sanity check. */ *ripdisp = disp; } p->opcode = *p->addr;}void __kprobes arch_arm_kprobe(struct kprobe *p){ text_poke(p->addr, ((unsigned char []){BREAKPOINT_INSTRUCTION}), 1);}void __kprobes arch_disarm_kprobe(struct kprobe *p){ text_poke(p->addr, &p->opcode, 1);}void __kprobes arch_remove_kprobe(struct kprobe *p){ mutex_lock(&kprobe_mutex); free_insn_slot(p->ainsn.insn, 0); mutex_unlock(&kprobe_mutex);}static void __kprobes save_previous_kprobe(struct kprobe_ctlblk *kcb){ kcb->prev_kprobe.kp = kprobe_running(); kcb->prev_kprobe.status = kcb->kprobe_status; kcb->prev_kprobe.old_rflags = kcb->kprobe_old_rflags; kcb->prev_kprobe.saved_rflags = kcb->kprobe_saved_rflags;}static void __kprobes restore_previous_kprobe(struct kprobe_ctlblk *kcb){ __get_cpu_var(current_kprobe) = kcb->prev_kprobe.kp; kcb->kprobe_status = kcb->prev_kprobe.status; kcb->kprobe_old_rflags = kcb->prev_kprobe.old_rflags; kcb->kprobe_saved_rflags = kcb->prev_kprobe.saved_rflags;}static void __kprobes set_current_kprobe(struct kprobe *p, struct pt_regs *regs, struct kprobe_ctlblk *kcb){ __get_cpu_var(current_kprobe) = p; kcb->kprobe_saved_rflags = kcb->kprobe_old_rflags = (regs->eflags & (TF_MASK | IF_MASK)); if (is_IF_modifier(p->ainsn.insn)) kcb->kprobe_saved_rflags &= ~IF_MASK;}static void __kprobes prepare_singlestep(struct kprobe *p, struct pt_regs *regs){ regs->eflags |= TF_MASK; regs->eflags &= ~IF_MASK; /*single step inline if the instruction is an int3*/ if (p->opcode == BREAKPOINT_INSTRUCTION) regs->rip = (unsigned long)p->addr; else regs->rip = (unsigned long)p->ainsn.insn;}/* Called with kretprobe_lock held */void __kprobes arch_prepare_kretprobe(struct kretprobe_instance *ri, struct pt_regs *regs){ unsigned long *sara = (unsigned long *)regs->rsp; ri->ret_addr = (kprobe_opcode_t *) *sara; /* Replace the return addr with trampoline addr */ *sara = (unsigned long) &kretprobe_trampoline;}int __kprobes kprobe_handler(struct pt_regs *regs){ struct kprobe *p; int ret = 0; kprobe_opcode_t *addr = (kprobe_opcode_t *)(regs->rip - sizeof(kprobe_opcode_t)); struct kprobe_ctlblk *kcb; /* * We don't want to be preempted for the entire * duration of kprobe processing */ preempt_disable(); kcb = get_kprobe_ctlblk(); /* Check we're not actually recursing */ if (kprobe_running()) { p = get_kprobe(addr); if (p) { if (kcb->kprobe_status == KPROBE_HIT_SS && *p->ainsn.insn == BREAKPOINT_INSTRUCTION) { regs->eflags &= ~TF_MASK; regs->eflags |= kcb->kprobe_saved_rflags; goto no_kprobe; } else if (kcb->kprobe_status == KPROBE_HIT_SSDONE) { /* TODO: Provide re-entrancy from * post_kprobes_handler() and avoid exception * stack corruption while single-stepping on * the instruction of the new probe. */ arch_disarm_kprobe(p); regs->rip = (unsigned long)p->addr; reset_current_kprobe(); ret = 1; } else { /* We have reentered the kprobe_handler(), since * another probe was hit while within the * handler. We here save the original kprobe * variables and just single step on instruction * of the new probe without calling any user * handlers. */ save_previous_kprobe(kcb); set_current_kprobe(p, regs, kcb); kprobes_inc_nmissed_count(p); prepare_singlestep(p, regs); kcb->kprobe_status = KPROBE_REENTER; return 1; } } else { if (*addr != BREAKPOINT_INSTRUCTION) { /* The breakpoint instruction was removed by * another cpu right after we hit, no further * handling of this interrupt is appropriate */ regs->rip = (unsigned long)addr; ret = 1; goto no_kprobe; } p = __get_cpu_var(current_kprobe); if (p->break_handler && p->break_handler(p, regs)) { goto ss_probe; } } goto no_kprobe; } p = get_kprobe(addr); if (!p) { if (*addr != BREAKPOINT_INSTRUCTION) { /* * The breakpoint instruction was removed right * after we hit it. Another cpu has removed * either a probepoint or a debugger breakpoint * at this address. In either case, no further * handling of this interrupt is appropriate. * Back up over the (now missing) int3 and run * the original instruction. */ regs->rip = (unsigned long)addr; ret = 1; } /* Not one of ours: let kernel handle it */ goto no_kprobe; } set_current_kprobe(p, regs, kcb); kcb->kprobe_status = KPROBE_HIT_ACTIVE; if (p->pre_handler && p->pre_handler(p, regs)) /* handler has already set things up, so skip ss setup */ return 1;ss_probe: prepare_singlestep(p, regs); kcb->kprobe_status = KPROBE_HIT_SS;
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -