⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 kprobes_64.c

📁 linux 内核源代码
💻 C
📖 第 1 页 / 共 2 页
字号:
/* *  Kernel Probes (KProbes) * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. * * Copyright (C) IBM Corporation, 2002, 2004 * * 2002-Oct	Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel *		Probes initial implementation ( includes contributions from *		Rusty Russell). * 2004-July	Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes *		interface to access function arguments. * 2004-Oct	Jim Keniston <kenistoj@us.ibm.com> and Prasanna S Panchamukhi *		<prasanna@in.ibm.com> adapted for x86_64 * 2005-Mar	Roland McGrath <roland@redhat.com> *		Fixed to handle %rip-relative addressing mode correctly. * 2005-May     Rusty Lynch <rusty.lynch@intel.com> *              Added function return probes functionality */#include <linux/kprobes.h>#include <linux/ptrace.h>#include <linux/string.h>#include <linux/slab.h>#include <linux/preempt.h>#include <linux/module.h>#include <linux/kdebug.h>#include <asm/pgtable.h>#include <asm/uaccess.h>#include <asm/alternative.h>void jprobe_return_end(void);static void __kprobes arch_copy_kprobe(struct kprobe *p);DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL;DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);struct kretprobe_blackpoint kretprobe_blacklist[] = {	{"__switch_to", }, /* This function switches only current task, but			      doesn't switch kernel stack.*/	{NULL, NULL}	/* Terminator */};const int kretprobe_blacklist_size = ARRAY_SIZE(kretprobe_blacklist);/* * returns non-zero if opcode modifies the interrupt flag. */static int __kprobes is_IF_modifier(kprobe_opcode_t *insn){	switch (*insn) {	case 0xfa:		/* cli */	case 0xfb:		/* sti */	case 0xcf:		/* iret/iretd */	case 0x9d:		/* popf/popfd */		return 1;	}	if (*insn  >= 0x40 && *insn <= 0x4f && *++insn == 0xcf)		return 1;	return 0;}int __kprobes arch_prepare_kprobe(struct kprobe *p){	/* insn: must be on special executable page on x86_64. */	p->ainsn.insn = get_insn_slot();	if (!p->ainsn.insn) {		return -ENOMEM;	}	arch_copy_kprobe(p);	return 0;}/* * Determine if the instruction uses the %rip-relative addressing mode. * If it does, return the address of the 32-bit displacement word. * If not, return null. */static s32 __kprobes *is_riprel(u8 *insn){#define W(row,b0,b1,b2,b3,b4,b5,b6,b7,b8,b9,ba,bb,bc,bd,be,bf)		      \	(((b0##UL << 0x0)|(b1##UL << 0x1)|(b2##UL << 0x2)|(b3##UL << 0x3) |   \	  (b4##UL << 0x4)|(b5##UL << 0x5)|(b6##UL << 0x6)|(b7##UL << 0x7) |   \	  (b8##UL << 0x8)|(b9##UL << 0x9)|(ba##UL << 0xa)|(bb##UL << 0xb) |   \	  (bc##UL << 0xc)|(bd##UL << 0xd)|(be##UL << 0xe)|(bf##UL << 0xf))    \	 << (row % 64))	static const u64 onebyte_has_modrm[256 / 64] = {		/*      0 1 2 3 4 5 6 7 8 9 a b c d e f         */		/*      -------------------------------         */		W(0x00, 1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0)| /* 00 */		W(0x10, 1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0)| /* 10 */		W(0x20, 1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0)| /* 20 */		W(0x30, 1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0), /* 30 */		W(0x40, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)| /* 40 */		W(0x50, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)| /* 50 */		W(0x60, 0,0,1,1,0,0,0,0,0,1,0,1,0,0,0,0)| /* 60 */		W(0x70, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0), /* 70 */		W(0x80, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)| /* 80 */		W(0x90, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)| /* 90 */		W(0xa0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)| /* a0 */		W(0xb0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0), /* b0 */		W(0xc0, 1,1,0,0,1,1,1,1,0,0,0,0,0,0,0,0)| /* c0 */		W(0xd0, 1,1,1,1,0,0,0,0,1,1,1,1,1,1,1,1)| /* d0 */		W(0xe0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)| /* e0 */		W(0xf0, 0,0,0,0,0,0,1,1,0,0,0,0,0,0,1,1)  /* f0 */		/*      -------------------------------         */		/*      0 1 2 3 4 5 6 7 8 9 a b c d e f         */	};	static const u64 twobyte_has_modrm[256 / 64] = {		/*      0 1 2 3 4 5 6 7 8 9 a b c d e f         */		/*      -------------------------------         */		W(0x00, 1,1,1,1,0,0,0,0,0,0,0,0,0,1,0,1)| /* 0f */		W(0x10, 1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0)| /* 1f */		W(0x20, 1,1,1,1,1,0,1,0,1,1,1,1,1,1,1,1)| /* 2f */		W(0x30, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0), /* 3f */		W(0x40, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)| /* 4f */		W(0x50, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)| /* 5f */		W(0x60, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)| /* 6f */		W(0x70, 1,1,1,1,1,1,1,0,0,0,0,0,1,1,1,1), /* 7f */		W(0x80, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)| /* 8f */		W(0x90, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)| /* 9f */		W(0xa0, 0,0,0,1,1,1,1,1,0,0,0,1,1,1,1,1)| /* af */		W(0xb0, 1,1,1,1,1,1,1,1,0,0,1,1,1,1,1,1), /* bf */		W(0xc0, 1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0)| /* cf */		W(0xd0, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)| /* df */		W(0xe0, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)| /* ef */		W(0xf0, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0)  /* ff */		/*      -------------------------------         */		/*      0 1 2 3 4 5 6 7 8 9 a b c d e f         */	};#undef	W	int need_modrm;	/* Skip legacy instruction prefixes.  */	while (1) {		switch (*insn) {		case 0x66:		case 0x67:		case 0x2e:		case 0x3e:		case 0x26:		case 0x64:		case 0x65:		case 0x36:		case 0xf0:		case 0xf3:		case 0xf2:			++insn;			continue;		}		break;	}	/* Skip REX instruction prefix.  */	if ((*insn & 0xf0) == 0x40)		++insn;	if (*insn == 0x0f) {	/* Two-byte opcode.  */		++insn;		need_modrm = test_bit(*insn, twobyte_has_modrm);	} else {		/* One-byte opcode.  */		need_modrm = test_bit(*insn, onebyte_has_modrm);	}	if (need_modrm) {		u8 modrm = *++insn;		if ((modrm & 0xc7) == 0x05) { /* %rip+disp32 addressing mode */			/* Displacement follows ModRM byte.  */			return (s32 *) ++insn;		}	}	/* No %rip-relative addressing mode here.  */	return NULL;}static void __kprobes arch_copy_kprobe(struct kprobe *p){	s32 *ripdisp;	memcpy(p->ainsn.insn, p->addr, MAX_INSN_SIZE);	ripdisp = is_riprel(p->ainsn.insn);	if (ripdisp) {		/*		 * The copied instruction uses the %rip-relative		 * addressing mode.  Adjust the displacement for the		 * difference between the original location of this		 * instruction and the location of the copy that will		 * actually be run.  The tricky bit here is making sure		 * that the sign extension happens correctly in this		 * calculation, since we need a signed 32-bit result to		 * be sign-extended to 64 bits when it's added to the		 * %rip value and yield the same 64-bit result that the		 * sign-extension of the original signed 32-bit		 * displacement would have given.		 */		s64 disp = (u8 *) p->addr + *ripdisp - (u8 *) p->ainsn.insn;		BUG_ON((s64) (s32) disp != disp); /* Sanity check.  */		*ripdisp = disp;	}	p->opcode = *p->addr;}void __kprobes arch_arm_kprobe(struct kprobe *p){	text_poke(p->addr, ((unsigned char []){BREAKPOINT_INSTRUCTION}), 1);}void __kprobes arch_disarm_kprobe(struct kprobe *p){	text_poke(p->addr, &p->opcode, 1);}void __kprobes arch_remove_kprobe(struct kprobe *p){	mutex_lock(&kprobe_mutex);	free_insn_slot(p->ainsn.insn, 0);	mutex_unlock(&kprobe_mutex);}static void __kprobes save_previous_kprobe(struct kprobe_ctlblk *kcb){	kcb->prev_kprobe.kp = kprobe_running();	kcb->prev_kprobe.status = kcb->kprobe_status;	kcb->prev_kprobe.old_rflags = kcb->kprobe_old_rflags;	kcb->prev_kprobe.saved_rflags = kcb->kprobe_saved_rflags;}static void __kprobes restore_previous_kprobe(struct kprobe_ctlblk *kcb){	__get_cpu_var(current_kprobe) = kcb->prev_kprobe.kp;	kcb->kprobe_status = kcb->prev_kprobe.status;	kcb->kprobe_old_rflags = kcb->prev_kprobe.old_rflags;	kcb->kprobe_saved_rflags = kcb->prev_kprobe.saved_rflags;}static void __kprobes set_current_kprobe(struct kprobe *p, struct pt_regs *regs,				struct kprobe_ctlblk *kcb){	__get_cpu_var(current_kprobe) = p;	kcb->kprobe_saved_rflags = kcb->kprobe_old_rflags		= (regs->eflags & (TF_MASK | IF_MASK));	if (is_IF_modifier(p->ainsn.insn))		kcb->kprobe_saved_rflags &= ~IF_MASK;}static void __kprobes prepare_singlestep(struct kprobe *p, struct pt_regs *regs){	regs->eflags |= TF_MASK;	regs->eflags &= ~IF_MASK;	/*single step inline if the instruction is an int3*/	if (p->opcode == BREAKPOINT_INSTRUCTION)		regs->rip = (unsigned long)p->addr;	else		regs->rip = (unsigned long)p->ainsn.insn;}/* Called with kretprobe_lock held */void __kprobes arch_prepare_kretprobe(struct kretprobe_instance *ri,				      struct pt_regs *regs){	unsigned long *sara = (unsigned long *)regs->rsp;	ri->ret_addr = (kprobe_opcode_t *) *sara;	/* Replace the return addr with trampoline addr */	*sara = (unsigned long) &kretprobe_trampoline;}int __kprobes kprobe_handler(struct pt_regs *regs){	struct kprobe *p;	int ret = 0;	kprobe_opcode_t *addr = (kprobe_opcode_t *)(regs->rip - sizeof(kprobe_opcode_t));	struct kprobe_ctlblk *kcb;	/*	 * We don't want to be preempted for the entire	 * duration of kprobe processing	 */	preempt_disable();	kcb = get_kprobe_ctlblk();	/* Check we're not actually recursing */	if (kprobe_running()) {		p = get_kprobe(addr);		if (p) {			if (kcb->kprobe_status == KPROBE_HIT_SS &&				*p->ainsn.insn == BREAKPOINT_INSTRUCTION) {				regs->eflags &= ~TF_MASK;				regs->eflags |= kcb->kprobe_saved_rflags;				goto no_kprobe;			} else if (kcb->kprobe_status == KPROBE_HIT_SSDONE) {				/* TODO: Provide re-entrancy from				 * post_kprobes_handler() and avoid exception				 * stack corruption while single-stepping on				 * the instruction of the new probe.				 */				arch_disarm_kprobe(p);				regs->rip = (unsigned long)p->addr;				reset_current_kprobe();				ret = 1;			} else {				/* We have reentered the kprobe_handler(), since				 * another probe was hit while within the				 * handler. We here save the original kprobe				 * variables and just single step on instruction				 * of the new probe without calling any user				 * handlers.				 */				save_previous_kprobe(kcb);				set_current_kprobe(p, regs, kcb);				kprobes_inc_nmissed_count(p);				prepare_singlestep(p, regs);				kcb->kprobe_status = KPROBE_REENTER;				return 1;			}		} else {			if (*addr != BREAKPOINT_INSTRUCTION) {			/* The breakpoint instruction was removed by			 * another cpu right after we hit, no further			 * handling of this interrupt is appropriate			 */				regs->rip = (unsigned long)addr;				ret = 1;				goto no_kprobe;			}			p = __get_cpu_var(current_kprobe);			if (p->break_handler && p->break_handler(p, regs)) {				goto ss_probe;			}		}		goto no_kprobe;	}	p = get_kprobe(addr);	if (!p) {		if (*addr != BREAKPOINT_INSTRUCTION) {			/*			 * The breakpoint instruction was removed right			 * after we hit it.  Another cpu has removed			 * either a probepoint or a debugger breakpoint			 * at this address.  In either case, no further			 * handling of this interrupt is appropriate.			 * Back up over the (now missing) int3 and run			 * the original instruction.			 */			regs->rip = (unsigned long)addr;			ret = 1;		}		/* Not one of ours: let kernel handle it */		goto no_kprobe;	}	set_current_kprobe(p, regs, kcb);	kcb->kprobe_status = KPROBE_HIT_ACTIVE;	if (p->pre_handler && p->pre_handler(p, regs))		/* handler has already set things up, so skip ss setup */		return 1;ss_probe:	prepare_singlestep(p, regs);	kcb->kprobe_status = KPROBE_HIT_SS;

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -