⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 time_64.c

📁 linux 内核源代码
💻 C
字号:
/* *  "High Precision Event Timer" based timekeeping. * *  Copyright (c) 1991,1992,1995  Linus Torvalds *  Copyright (c) 1994  Alan Modra *  Copyright (c) 1995  Markus Kuhn *  Copyright (c) 1996  Ingo Molnar *  Copyright (c) 1998  Andrea Arcangeli *  Copyright (c) 2002,2006  Vojtech Pavlik *  Copyright (c) 2003  Andi Kleen *  RTC support code taken from arch/i386/kernel/timers/time_hpet.c */#include <linux/kernel.h>#include <linux/sched.h>#include <linux/interrupt.h>#include <linux/init.h>#include <linux/mc146818rtc.h>#include <linux/time.h>#include <linux/ioport.h>#include <linux/module.h>#include <linux/device.h>#include <linux/sysdev.h>#include <linux/bcd.h>#include <linux/notifier.h>#include <linux/cpu.h>#include <linux/kallsyms.h>#include <linux/acpi.h>#include <linux/clockchips.h>#ifdef CONFIG_ACPI#include <acpi/achware.h>	/* for PM timer frequency */#include <acpi/acpi_bus.h>#endif#include <asm/i8253.h>#include <asm/pgtable.h>#include <asm/vsyscall.h>#include <asm/timex.h>#include <asm/proto.h>#include <asm/hpet.h>#include <asm/sections.h>#include <linux/hpet.h>#include <asm/apic.h>#include <asm/hpet.h>#include <asm/mpspec.h>#include <asm/nmi.h>#include <asm/vgtod.h>DEFINE_SPINLOCK(rtc_lock);EXPORT_SYMBOL(rtc_lock);volatile unsigned long __jiffies __section_jiffies = INITIAL_JIFFIES;unsigned long profile_pc(struct pt_regs *regs){	unsigned long pc = instruction_pointer(regs);	/* Assume the lock function has either no stack frame or a copy	   of eflags from PUSHF	   Eflags always has bits 22 and up cleared unlike kernel addresses. */	if (!user_mode(regs) && in_lock_functions(pc)) {		unsigned long *sp = (unsigned long *)regs->rsp;		if (sp[0] >> 22)			return sp[0];		if (sp[1] >> 22)			return sp[1];	}	return pc;}EXPORT_SYMBOL(profile_pc);/* * In order to set the CMOS clock precisely, set_rtc_mmss has to be called 500 * ms after the second nowtime has started, because when nowtime is written * into the registers of the CMOS clock, it will jump to the next second * precisely 500 ms later. Check the Motorola MC146818A or Dallas DS12887 data * sheet for details. */static int set_rtc_mmss(unsigned long nowtime){	int retval = 0;	int real_seconds, real_minutes, cmos_minutes;	unsigned char control, freq_select;	unsigned long flags;/* * set_rtc_mmss is called when irqs are enabled, so disable irqs here */	spin_lock_irqsave(&rtc_lock, flags);/* * Tell the clock it's being set and stop it. */	control = CMOS_READ(RTC_CONTROL);	CMOS_WRITE(control | RTC_SET, RTC_CONTROL);	freq_select = CMOS_READ(RTC_FREQ_SELECT);	CMOS_WRITE(freq_select | RTC_DIV_RESET2, RTC_FREQ_SELECT);	cmos_minutes = CMOS_READ(RTC_MINUTES);		BCD_TO_BIN(cmos_minutes);/* * since we're only adjusting minutes and seconds, don't interfere with hour * overflow. This avoids messing with unknown time zones but requires your RTC * not to be off by more than 15 minutes. Since we're calling it only when * our clock is externally synchronized using NTP, this shouldn't be a problem. */	real_seconds = nowtime % 60;	real_minutes = nowtime / 60;	if (((abs(real_minutes - cmos_minutes) + 15) / 30) & 1)		real_minutes += 30;		/* correct for half hour time zone */	real_minutes %= 60;	if (abs(real_minutes - cmos_minutes) >= 30) {		printk(KERN_WARNING "time.c: can't update CMOS clock "		       "from %d to %d\n", cmos_minutes, real_minutes);		retval = -1;	} else {		BIN_TO_BCD(real_seconds);		BIN_TO_BCD(real_minutes);		CMOS_WRITE(real_seconds, RTC_SECONDS);		CMOS_WRITE(real_minutes, RTC_MINUTES);	}/* * The following flags have to be released exactly in this order, otherwise the * DS12887 (popular MC146818A clone with integrated battery and quartz) will * not reset the oscillator and will not update precisely 500 ms later. You * won't find this mentioned in the Dallas Semiconductor data sheets, but who * believes data sheets anyway ... -- Markus Kuhn */	CMOS_WRITE(control, RTC_CONTROL);	CMOS_WRITE(freq_select, RTC_FREQ_SELECT);	spin_unlock_irqrestore(&rtc_lock, flags);	return retval;}int update_persistent_clock(struct timespec now){	return set_rtc_mmss(now.tv_sec);}static irqreturn_t timer_event_interrupt(int irq, void *dev_id){	add_pda(irq0_irqs, 1);	global_clock_event->event_handler(global_clock_event);	return IRQ_HANDLED;}unsigned long read_persistent_clock(void){	unsigned int year, mon, day, hour, min, sec;	unsigned long flags;	unsigned century = 0;	spin_lock_irqsave(&rtc_lock, flags);	/*	 * if UIP is clear, then we have >= 244 microseconds before RTC	 * registers will be updated.  Spec sheet says that this is the	 * reliable way to read RTC - registers invalid (off bus) during update	 */	while ((CMOS_READ(RTC_FREQ_SELECT) & RTC_UIP))		cpu_relax();	/* now read all RTC registers while stable with interrupts disabled */	sec = CMOS_READ(RTC_SECONDS);	min = CMOS_READ(RTC_MINUTES);	hour = CMOS_READ(RTC_HOURS);	day = CMOS_READ(RTC_DAY_OF_MONTH);	mon = CMOS_READ(RTC_MONTH);	year = CMOS_READ(RTC_YEAR);#ifdef CONFIG_ACPI	if (acpi_gbl_FADT.header.revision >= FADT2_REVISION_ID &&				acpi_gbl_FADT.century)		century = CMOS_READ(acpi_gbl_FADT.century);#endif	spin_unlock_irqrestore(&rtc_lock, flags);	/*	 * We know that x86-64 always uses BCD format, no need to check the	 * config register.	 */	BCD_TO_BIN(sec);	BCD_TO_BIN(min);	BCD_TO_BIN(hour);	BCD_TO_BIN(day);	BCD_TO_BIN(mon);	BCD_TO_BIN(year);	if (century) {		BCD_TO_BIN(century);		year += century * 100;		printk(KERN_INFO "Extended CMOS year: %d\n", century * 100);	} else {		/*		 * x86-64 systems only exists since 2002.		 * This will work up to Dec 31, 2100		 */		year += 2000;	}	return mktime(year, mon, day, hour, min, sec);}/* calibrate_cpu is used on systems with fixed rate TSCs to determine * processor frequency */#define TICK_COUNT 100000000static unsigned int __init tsc_calibrate_cpu_khz(void){	int tsc_start, tsc_now;	int i, no_ctr_free;	unsigned long evntsel3 = 0, pmc3 = 0, pmc_now = 0;	unsigned long flags;	for (i = 0; i < 4; i++)		if (avail_to_resrv_perfctr_nmi_bit(i))			break;	no_ctr_free = (i == 4);	if (no_ctr_free) {		i = 3;		rdmsrl(MSR_K7_EVNTSEL3, evntsel3);		wrmsrl(MSR_K7_EVNTSEL3, 0);		rdmsrl(MSR_K7_PERFCTR3, pmc3);	} else {		reserve_perfctr_nmi(MSR_K7_PERFCTR0 + i);		reserve_evntsel_nmi(MSR_K7_EVNTSEL0 + i);	}	local_irq_save(flags);	/* start meauring cycles, incrementing from 0 */	wrmsrl(MSR_K7_PERFCTR0 + i, 0);	wrmsrl(MSR_K7_EVNTSEL0 + i, 1 << 22 | 3 << 16 | 0x76);	rdtscl(tsc_start);	do {		rdmsrl(MSR_K7_PERFCTR0 + i, pmc_now);		tsc_now = get_cycles_sync();	} while ((tsc_now - tsc_start) < TICK_COUNT);	local_irq_restore(flags);	if (no_ctr_free) {		wrmsrl(MSR_K7_EVNTSEL3, 0);		wrmsrl(MSR_K7_PERFCTR3, pmc3);		wrmsrl(MSR_K7_EVNTSEL3, evntsel3);	} else {		release_perfctr_nmi(MSR_K7_PERFCTR0 + i);		release_evntsel_nmi(MSR_K7_EVNTSEL0 + i);	}	return pmc_now * tsc_khz / (tsc_now - tsc_start);}static struct irqaction irq0 = {	.handler	= timer_event_interrupt,	.flags		= IRQF_DISABLED | IRQF_IRQPOLL | IRQF_NOBALANCING,	.mask		= CPU_MASK_NONE,	.name		= "timer"};void __init time_init(void){	if (!hpet_enable())		setup_pit_timer();	setup_irq(0, &irq0);	tsc_calibrate();	cpu_khz = tsc_khz;	if (cpu_has(&boot_cpu_data, X86_FEATURE_CONSTANT_TSC) &&		boot_cpu_data.x86_vendor == X86_VENDOR_AMD &&		boot_cpu_data.x86 == 16)		cpu_khz = tsc_calibrate_cpu_khz();	if (unsynchronized_tsc())		mark_tsc_unstable("TSCs unsynchronized");	if (cpu_has(&boot_cpu_data, X86_FEATURE_RDTSCP))		vgetcpu_mode = VGETCPU_RDTSCP;	else		vgetcpu_mode = VGETCPU_LSL;	printk(KERN_INFO "time.c: Detected %d.%03d MHz processor.\n",		cpu_khz / 1000, cpu_khz % 1000);	init_tsc_clocksource();}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -