⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 twofish-i586-asm_32.s

📁 linux 内核源代码
💻 S
字号:
/****************************************************************************   Copyright (C) 2006 by Joachim Fritschi, <jfritschi@freenet.de>        **                                                                         **   This program is free software; you can redistribute it and/or modify  **   it under the terms of the GNU General Public License as published by  **   the Free Software Foundation; either version 2 of the License, or     **   (at your option) any later version.                                   **                                                                         **   This program is distributed in the hope that it will be useful,       **   but WITHOUT ANY WARRANTY; without even the implied warranty of        **   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the         **   GNU General Public License for more details.                          **                                                                         **   You should have received a copy of the GNU General Public License     **   along with this program; if not, write to the                         **   Free Software Foundation, Inc.,                                       **   59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.             ****************************************************************************/.file "twofish-i586-asm.S".text#include <asm/asm-offsets.h>/* return adress at 0 */#define in_blk    12  /* input byte array address parameter*/#define out_blk   8  /* output byte array address parameter*/#define tfm       4  /* Twofish context structure */#define a_offset	0#define b_offset	4#define c_offset	8#define d_offset	12/* Structure of the crypto context struct*/#define s0	0	/* S0 Array 256 Words each */#define s1	1024	/* S1 Array */#define s2	2048	/* S2 Array */#define s3	3072	/* S3 Array */#define w	4096	/* 8 whitening keys (word) */#define k	4128	/* key 1-32 ( word ) *//* define a few register aliases to allow macro substitution */#define R0D    %eax#define R0B    %al#define R0H    %ah#define R1D    %ebx#define R1B    %bl#define R1H    %bh#define R2D    %ecx#define R2B    %cl#define R2H    %ch#define R3D    %edx#define R3B    %dl#define R3H    %dh/* performs input whitening */#define input_whitening(src,context,offset)\	xor	w+offset(context),	src;/* performs input whitening */#define output_whitening(src,context,offset)\	xor	w+16+offset(context),	src;/* * a input register containing a (rotated 16) * b input register containing b * c input register containing c * d input register containing d (already rol $1) * operations on a and b are interleaved to increase performance */#define encrypt_round(a,b,c,d,round)\	push	d ## D;\	movzx	b ## B,		%edi;\	mov	s1(%ebp,%edi,4),d ## D;\	movzx	a ## B,		%edi;\	mov	s2(%ebp,%edi,4),%esi;\	movzx	b ## H,		%edi;\	ror	$16,		b ## D;\	xor	s2(%ebp,%edi,4),d ## D;\	movzx	a ## H,		%edi;\	ror	$16,		a ## D;\	xor	s3(%ebp,%edi,4),%esi;\	movzx	b ## B,		%edi;\	xor	s3(%ebp,%edi,4),d ## D;\	movzx	a ## B,		%edi;\	xor	(%ebp,%edi,4),	%esi;\	movzx	b ## H,		%edi;\	ror	$15,		b ## D;\	xor	(%ebp,%edi,4),	d ## D;\	movzx	a ## H,		%edi;\	xor	s1(%ebp,%edi,4),%esi;\	pop	%edi;\	add	d ## D,		%esi;\	add	%esi,		d ## D;\	add	k+round(%ebp),	%esi;\	xor	%esi,		c ## D;\	rol	$15,		c ## D;\	add	k+4+round(%ebp),d ## D;\	xor	%edi,		d ## D;/* * a input register containing a (rotated 16) * b input register containing b * c input register containing c * d input register containing d (already rol $1) * operations on a and b are interleaved to increase performance * last round has different rotations for the output preparation */#define encrypt_last_round(a,b,c,d,round)\	push	d ## D;\	movzx	b ## B,		%edi;\	mov	s1(%ebp,%edi,4),d ## D;\	movzx	a ## B,		%edi;\	mov	s2(%ebp,%edi,4),%esi;\	movzx	b ## H,		%edi;\	ror	$16,		b ## D;\	xor	s2(%ebp,%edi,4),d ## D;\	movzx	a ## H,		%edi;\	ror	$16,		a ## D;\	xor	s3(%ebp,%edi,4),%esi;\	movzx	b ## B,		%edi;\	xor	s3(%ebp,%edi,4),d ## D;\	movzx	a ## B,		%edi;\	xor	(%ebp,%edi,4),	%esi;\	movzx	b ## H,		%edi;\	ror	$16,		b ## D;\	xor	(%ebp,%edi,4),	d ## D;\	movzx	a ## H,		%edi;\	xor	s1(%ebp,%edi,4),%esi;\	pop	%edi;\	add	d ## D,		%esi;\	add	%esi,		d ## D;\	add	k+round(%ebp),	%esi;\	xor	%esi,		c ## D;\	ror	$1,		c ## D;\	add	k+4+round(%ebp),d ## D;\	xor	%edi,		d ## D;/* * a input register containing a * b input register containing b (rotated 16) * c input register containing c * d input register containing d (already rol $1) * operations on a and b are interleaved to increase performance */#define decrypt_round(a,b,c,d,round)\	push	c ## D;\	movzx	a ## B,		%edi;\	mov	(%ebp,%edi,4),	c ## D;\	movzx	b ## B,		%edi;\	mov	s3(%ebp,%edi,4),%esi;\	movzx	a ## H,		%edi;\	ror	$16,		a ## D;\	xor	s1(%ebp,%edi,4),c ## D;\	movzx	b ## H,		%edi;\	ror	$16,		b ## D;\	xor	(%ebp,%edi,4),	%esi;\	movzx	a ## B,		%edi;\	xor	s2(%ebp,%edi,4),c ## D;\	movzx	b ## B,		%edi;\	xor	s1(%ebp,%edi,4),%esi;\	movzx	a ## H,		%edi;\	ror	$15,		a ## D;\	xor	s3(%ebp,%edi,4),c ## D;\	movzx	b ## H,		%edi;\	xor	s2(%ebp,%edi,4),%esi;\	pop	%edi;\	add	%esi,		c ## D;\	add	c ## D,		%esi;\	add	k+round(%ebp),	c ## D;\	xor	%edi,		c ## D;\	add	k+4+round(%ebp),%esi;\	xor	%esi,		d ## D;\	rol	$15,		d ## D;/* * a input register containing a * b input register containing b (rotated 16) * c input register containing c * d input register containing d (already rol $1) * operations on a and b are interleaved to increase performance * last round has different rotations for the output preparation */#define decrypt_last_round(a,b,c,d,round)\	push	c ## D;\	movzx	a ## B,		%edi;\	mov	(%ebp,%edi,4),	c ## D;\	movzx	b ## B,		%edi;\	mov	s3(%ebp,%edi,4),%esi;\	movzx	a ## H,		%edi;\	ror	$16,		a ## D;\	xor	s1(%ebp,%edi,4),c ## D;\	movzx	b ## H,		%edi;\	ror	$16,		b ## D;\	xor	(%ebp,%edi,4),	%esi;\	movzx	a ## B,		%edi;\	xor	s2(%ebp,%edi,4),c ## D;\	movzx	b ## B,		%edi;\	xor	s1(%ebp,%edi,4),%esi;\	movzx	a ## H,		%edi;\	ror	$16,		a ## D;\	xor	s3(%ebp,%edi,4),c ## D;\	movzx	b ## H,		%edi;\	xor	s2(%ebp,%edi,4),%esi;\	pop	%edi;\	add	%esi,		c ## D;\	add	c ## D,		%esi;\	add	k+round(%ebp),	c ## D;\	xor	%edi,		c ## D;\	add	k+4+round(%ebp),%esi;\	xor	%esi,		d ## D;\	ror	$1,		d ## D;.align 4.global twofish_enc_blk.global twofish_dec_blktwofish_enc_blk:	push	%ebp			/* save registers according to calling convention*/	push    %ebx	push    %esi	push    %edi	mov	tfm + 16(%esp),	%ebp	/* abuse the base pointer: set new base bointer to the crypto tfm */	add	$crypto_tfm_ctx_offset, %ebp	/* ctx adress */	mov     in_blk+16(%esp),%edi	/* input adress in edi */	mov	(%edi),		%eax	mov	b_offset(%edi),	%ebx	mov	c_offset(%edi),	%ecx	mov	d_offset(%edi),	%edx	input_whitening(%eax,%ebp,a_offset)	ror	$16,	%eax	input_whitening(%ebx,%ebp,b_offset)	input_whitening(%ecx,%ebp,c_offset)	input_whitening(%edx,%ebp,d_offset)	rol	$1,	%edx	encrypt_round(R0,R1,R2,R3,0);	encrypt_round(R2,R3,R0,R1,8);	encrypt_round(R0,R1,R2,R3,2*8);	encrypt_round(R2,R3,R0,R1,3*8);	encrypt_round(R0,R1,R2,R3,4*8);	encrypt_round(R2,R3,R0,R1,5*8);	encrypt_round(R0,R1,R2,R3,6*8);	encrypt_round(R2,R3,R0,R1,7*8);	encrypt_round(R0,R1,R2,R3,8*8);	encrypt_round(R2,R3,R0,R1,9*8);	encrypt_round(R0,R1,R2,R3,10*8);	encrypt_round(R2,R3,R0,R1,11*8);	encrypt_round(R0,R1,R2,R3,12*8);	encrypt_round(R2,R3,R0,R1,13*8);	encrypt_round(R0,R1,R2,R3,14*8);	encrypt_last_round(R2,R3,R0,R1,15*8);	output_whitening(%eax,%ebp,c_offset)	output_whitening(%ebx,%ebp,d_offset)	output_whitening(%ecx,%ebp,a_offset)	output_whitening(%edx,%ebp,b_offset)	mov	out_blk+16(%esp),%edi;	mov	%eax,		c_offset(%edi)	mov	%ebx,		d_offset(%edi)	mov	%ecx,		(%edi)	mov	%edx,		b_offset(%edi)	pop	%edi	pop	%esi	pop	%ebx	pop	%ebp	mov	$1,	%eax	rettwofish_dec_blk:	push	%ebp			/* save registers according to calling convention*/	push    %ebx	push    %esi	push    %edi	mov	tfm + 16(%esp),	%ebp	/* abuse the base pointer: set new base bointer to the crypto tfm */	add	$crypto_tfm_ctx_offset, %ebp	/* ctx adress */	mov     in_blk+16(%esp),%edi	/* input adress in edi */	mov	(%edi),		%eax	mov	b_offset(%edi),	%ebx	mov	c_offset(%edi),	%ecx	mov	d_offset(%edi),	%edx	output_whitening(%eax,%ebp,a_offset)	output_whitening(%ebx,%ebp,b_offset)	ror	$16,	%ebx	output_whitening(%ecx,%ebp,c_offset)	output_whitening(%edx,%ebp,d_offset)	rol	$1,	%ecx	decrypt_round(R0,R1,R2,R3,15*8);	decrypt_round(R2,R3,R0,R1,14*8);	decrypt_round(R0,R1,R2,R3,13*8);	decrypt_round(R2,R3,R0,R1,12*8);	decrypt_round(R0,R1,R2,R3,11*8);	decrypt_round(R2,R3,R0,R1,10*8);	decrypt_round(R0,R1,R2,R3,9*8);	decrypt_round(R2,R3,R0,R1,8*8);	decrypt_round(R0,R1,R2,R3,7*8);	decrypt_round(R2,R3,R0,R1,6*8);	decrypt_round(R0,R1,R2,R3,5*8);	decrypt_round(R2,R3,R0,R1,4*8);	decrypt_round(R0,R1,R2,R3,3*8);	decrypt_round(R2,R3,R0,R1,2*8);	decrypt_round(R0,R1,R2,R3,1*8);	decrypt_last_round(R2,R3,R0,R1,0);	input_whitening(%eax,%ebp,c_offset)	input_whitening(%ebx,%ebp,d_offset)	input_whitening(%ecx,%ebp,a_offset)	input_whitening(%edx,%ebp,b_offset)	mov	out_blk+16(%esp),%edi;	mov	%eax,		c_offset(%edi)	mov	%ebx,		d_offset(%edi)	mov	%ecx,		(%edi)	mov	%edx,		b_offset(%edi)	pop	%edi	pop	%esi	pop	%ebx	pop	%ebp	mov	$1,	%eax	ret

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -