📄 aes-i586-asm_32.s
字号:
// -------------------------------------------------------------------------// Copyright (c) 2001, Dr Brian Gladman < >, Worcester, UK.// All rights reserved.//// LICENSE TERMS//// The free distribution and use of this software in both source and binary // form is allowed (with or without changes) provided that://// 1. distributions of this source code include the above copyright // notice, this list of conditions and the following disclaimer////// 2. distributions in binary form include the above copyright// notice, this list of conditions and the following disclaimer// in the documentation and/or other associated materials////// 3. the copyright holder's name is not used to endorse products // built using this software without specific written permission.////// ALTERNATIVELY, provided that this notice is retained in full, this product// may be distributed under the terms of the GNU General Public License (GPL),// in which case the provisions of the GPL apply INSTEAD OF those given above.//// Copyright (c) 2004 Linus Torvalds <torvalds@osdl.org>// Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>// DISCLAIMER//// This software is provided 'as is' with no explicit or implied warranties// in respect of its properties including, but not limited to, correctness // and fitness for purpose.// -------------------------------------------------------------------------// Issue Date: 29/07/2002.file "aes-i586-asm.S".text#include <asm/asm-offsets.h>#define tlen 1024 // length of each of 4 'xor' arrays (256 32-bit words)/* offsets to parameters with one register pushed onto stack */#define tfm 8#define out_blk 12#define in_blk 16/* offsets in crypto_tfm structure */#define ekey (crypto_tfm_ctx_offset + 0)#define nrnd (crypto_tfm_ctx_offset + 256)#define dkey (crypto_tfm_ctx_offset + 260)// register mapping for encrypt and decrypt subroutines#define r0 eax#define r1 ebx#define r2 ecx#define r3 edx#define r4 esi#define r5 edi#define eaxl al#define eaxh ah#define ebxl bl#define ebxh bh#define ecxl cl#define ecxh ch#define edxl dl#define edxh dh#define _h(reg) reg##h#define h(reg) _h(reg)#define _l(reg) reg##l#define l(reg) _l(reg)// This macro takes a 32-bit word representing a column and uses// each of its four bytes to index into four tables of 256 32-bit// words to obtain values that are then xored into the appropriate// output registers r0, r1, r4 or r5. // Parameters:// table table base address// %1 out_state[0]// %2 out_state[1]// %3 out_state[2]// %4 out_state[3]// idx input register for the round (destroyed)// tmp scratch register for the round// sched key schedule#define do_col(table, a1,a2,a3,a4, idx, tmp) \ movzx %l(idx),%tmp; \ xor table(,%tmp,4),%a1; \ movzx %h(idx),%tmp; \ shr $16,%idx; \ xor table+tlen(,%tmp,4),%a2; \ movzx %l(idx),%tmp; \ movzx %h(idx),%idx; \ xor table+2*tlen(,%tmp,4),%a3; \ xor table+3*tlen(,%idx,4),%a4;// initialise output registers from the key schedule// NB1: original value of a3 is in idx on exit// NB2: original values of a1,a2,a4 aren't used#define do_fcol(table, a1,a2,a3,a4, idx, tmp, sched) \ mov 0 sched,%a1; \ movzx %l(idx),%tmp; \ mov 12 sched,%a2; \ xor table(,%tmp,4),%a1; \ mov 4 sched,%a4; \ movzx %h(idx),%tmp; \ shr $16,%idx; \ xor table+tlen(,%tmp,4),%a2; \ movzx %l(idx),%tmp; \ movzx %h(idx),%idx; \ xor table+3*tlen(,%idx,4),%a4; \ mov %a3,%idx; \ mov 8 sched,%a3; \ xor table+2*tlen(,%tmp,4),%a3;// initialise output registers from the key schedule// NB1: original value of a3 is in idx on exit// NB2: original values of a1,a2,a4 aren't used#define do_icol(table, a1,a2,a3,a4, idx, tmp, sched) \ mov 0 sched,%a1; \ movzx %l(idx),%tmp; \ mov 4 sched,%a2; \ xor table(,%tmp,4),%a1; \ mov 12 sched,%a4; \ movzx %h(idx),%tmp; \ shr $16,%idx; \ xor table+tlen(,%tmp,4),%a2; \ movzx %l(idx),%tmp; \ movzx %h(idx),%idx; \ xor table+3*tlen(,%idx,4),%a4; \ mov %a3,%idx; \ mov 8 sched,%a3; \ xor table+2*tlen(,%tmp,4),%a3;// original Gladman had conditional saves to MMX regs.#define save(a1, a2) \ mov %a2,4*a1(%esp)#define restore(a1, a2) \ mov 4*a2(%esp),%a1// These macros perform a forward encryption cycle. They are entered with// the first previous round column values in r0,r1,r4,r5 and// exit with the final values in the same registers, using stack// for temporary storage.// round column values// on entry: r0,r1,r4,r5// on exit: r2,r1,r4,r5#define fwd_rnd1(arg, table) \ save (0,r1); \ save (1,r5); \ \ /* compute new column values */ \ do_fcol(table, r2,r5,r4,r1, r0,r3, arg); /* idx=r0 */ \ do_col (table, r4,r1,r2,r5, r0,r3); /* idx=r4 */ \ restore(r0,0); \ do_col (table, r1,r2,r5,r4, r0,r3); /* idx=r1 */ \ restore(r0,1); \ do_col (table, r5,r4,r1,r2, r0,r3); /* idx=r5 */// round column values// on entry: r2,r1,r4,r5// on exit: r0,r1,r4,r5#define fwd_rnd2(arg, table) \ save (0,r1); \ save (1,r5); \ \ /* compute new column values */ \ do_fcol(table, r0,r5,r4,r1, r2,r3, arg); /* idx=r2 */ \ do_col (table, r4,r1,r0,r5, r2,r3); /* idx=r4 */ \ restore(r2,0); \ do_col (table, r1,r0,r5,r4, r2,r3); /* idx=r1 */ \ restore(r2,1); \ do_col (table, r5,r4,r1,r0, r2,r3); /* idx=r5 */// These macros performs an inverse encryption cycle. They are entered with// the first previous round column values in r0,r1,r4,r5 and// exit with the final values in the same registers, using stack// for temporary storage// round column values// on entry: r0,r1,r4,r5// on exit: r2,r1,r4,r5#define inv_rnd1(arg, table) \ save (0,r1); \ save (1,r5); \ \ /* compute new column values */ \ do_icol(table, r2,r1,r4,r5, r0,r3, arg); /* idx=r0 */ \ do_col (table, r4,r5,r2,r1, r0,r3); /* idx=r4 */ \ restore(r0,0); \ do_col (table, r1,r4,r5,r2, r0,r3); /* idx=r1 */ \ restore(r0,1); \ do_col (table, r5,r2,r1,r4, r0,r3); /* idx=r5 */// round column values// on entry: r2,r1,r4,r5// on exit: r0,r1,r4,r5#define inv_rnd2(arg, table) \ save (0,r1); \ save (1,r5); \ \ /* compute new column values */ \ do_icol(table, r0,r1,r4,r5, r2,r3, arg); /* idx=r2 */ \ do_col (table, r4,r5,r0,r1, r2,r3); /* idx=r4 */ \ restore(r2,0); \ do_col (table, r1,r4,r5,r0, r2,r3); /* idx=r1 */ \ restore(r2,1); \ do_col (table, r5,r0,r1,r4, r2,r3); /* idx=r5 */// AES (Rijndael) Encryption Subroutine/* void aes_enc_blk(struct crypto_tfm *tfm, u8 *out_blk, const u8 *in_blk) */.global aes_enc_blk.extern ft_tab.extern fl_tab.align 4aes_enc_blk: push %ebp mov tfm(%esp),%ebp// CAUTION: the order and the values used in these assigns // rely on the register mappings1: push %ebx mov in_blk+4(%esp),%r2 push %esi mov nrnd(%ebp),%r3 // number of rounds push %edi#if ekey != 0 lea ekey(%ebp),%ebp // key pointer#endif// input four columns and xor in first round key mov (%r2),%r0 mov 4(%r2),%r1 mov 8(%r2),%r4 mov 12(%r2),%r5 xor (%ebp),%r0 xor 4(%ebp),%r1 xor 8(%ebp),%r4 xor 12(%ebp),%r5 sub $8,%esp // space for register saves on stack add $16,%ebp // increment to next round key cmp $12,%r3 jb 4f // 10 rounds for 128-bit key lea 32(%ebp),%ebp je 3f // 12 rounds for 192-bit key lea 32(%ebp),%ebp2: fwd_rnd1( -64(%ebp) ,ft_tab) // 14 rounds for 256-bit key fwd_rnd2( -48(%ebp) ,ft_tab)3: fwd_rnd1( -32(%ebp) ,ft_tab) // 12 rounds for 192-bit key fwd_rnd2( -16(%ebp) ,ft_tab)4: fwd_rnd1( (%ebp) ,ft_tab) // 10 rounds for 128-bit key fwd_rnd2( +16(%ebp) ,ft_tab) fwd_rnd1( +32(%ebp) ,ft_tab) fwd_rnd2( +48(%ebp) ,ft_tab) fwd_rnd1( +64(%ebp) ,ft_tab) fwd_rnd2( +80(%ebp) ,ft_tab) fwd_rnd1( +96(%ebp) ,ft_tab) fwd_rnd2(+112(%ebp) ,ft_tab) fwd_rnd1(+128(%ebp) ,ft_tab) fwd_rnd2(+144(%ebp) ,fl_tab) // last round uses a different table// move final values to the output array. CAUTION: the // order of these assigns rely on the register mappings add $8,%esp mov out_blk+12(%esp),%ebp mov %r5,12(%ebp) pop %edi mov %r4,8(%ebp) pop %esi mov %r1,4(%ebp) pop %ebx mov %r0,(%ebp) pop %ebp mov $1,%eax ret// AES (Rijndael) Decryption Subroutine/* void aes_dec_blk(struct crypto_tfm *tfm, u8 *out_blk, const u8 *in_blk) */.global aes_dec_blk.extern it_tab.extern il_tab.align 4aes_dec_blk: push %ebp mov tfm(%esp),%ebp// CAUTION: the order and the values used in these assigns // rely on the register mappings1: push %ebx mov in_blk+4(%esp),%r2 push %esi mov nrnd(%ebp),%r3 // number of rounds push %edi#if dkey != 0 lea dkey(%ebp),%ebp // key pointer#endif mov %r3,%r0 shl $4,%r0 add %r0,%ebp // input four columns and xor in first round key mov (%r2),%r0 mov 4(%r2),%r1 mov 8(%r2),%r4 mov 12(%r2),%r5 xor (%ebp),%r0 xor 4(%ebp),%r1 xor 8(%ebp),%r4 xor 12(%ebp),%r5 sub $8,%esp // space for register saves on stack sub $16,%ebp // increment to next round key cmp $12,%r3 jb 4f // 10 rounds for 128-bit key lea -32(%ebp),%ebp je 3f // 12 rounds for 192-bit key lea -32(%ebp),%ebp2: inv_rnd1( +64(%ebp), it_tab) // 14 rounds for 256-bit key inv_rnd2( +48(%ebp), it_tab)3: inv_rnd1( +32(%ebp), it_tab) // 12 rounds for 192-bit key inv_rnd2( +16(%ebp), it_tab)4: inv_rnd1( (%ebp), it_tab) // 10 rounds for 128-bit key inv_rnd2( -16(%ebp), it_tab) inv_rnd1( -32(%ebp), it_tab) inv_rnd2( -48(%ebp), it_tab) inv_rnd1( -64(%ebp), it_tab) inv_rnd2( -80(%ebp), it_tab) inv_rnd1( -96(%ebp), it_tab) inv_rnd2(-112(%ebp), it_tab) inv_rnd1(-128(%ebp), it_tab) inv_rnd2(-144(%ebp), il_tab) // last round uses a different table// move final values to the output array. CAUTION: the // order of these assigns rely on the register mappings add $8,%esp mov out_blk+12(%esp),%ebp mov %r5,12(%ebp) pop %edi mov %r4,8(%ebp) pop %esi mov %r1,4(%ebp) pop %ebx mov %r0,(%ebp) pop %ebp mov $1,%eax ret
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -