⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 aes-i586-asm_32.s

📁 linux 内核源代码
💻 S
字号:
// -------------------------------------------------------------------------// Copyright (c) 2001, Dr Brian Gladman <                 >, Worcester, UK.// All rights reserved.//// LICENSE TERMS//// The free distribution and use of this software in both source and binary // form is allowed (with or without changes) provided that:////   1. distributions of this source code include the above copyright //      notice, this list of conditions and the following disclaimer//////   2. distributions in binary form include the above copyright//      notice, this list of conditions and the following disclaimer//      in the documentation and/or other associated materials//////   3. the copyright holder's name is not used to endorse products //      built using this software without specific written permission.////// ALTERNATIVELY, provided that this notice is retained in full, this product// may be distributed under the terms of the GNU General Public License (GPL),// in which case the provisions of the GPL apply INSTEAD OF those given above.//// Copyright (c) 2004 Linus Torvalds <torvalds@osdl.org>// Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>// DISCLAIMER//// This software is provided 'as is' with no explicit or implied warranties// in respect of its properties including, but not limited to, correctness // and fitness for purpose.// -------------------------------------------------------------------------// Issue Date: 29/07/2002.file "aes-i586-asm.S".text#include <asm/asm-offsets.h>#define tlen 1024   // length of each of 4 'xor' arrays (256 32-bit words)/* offsets to parameters with one register pushed onto stack */#define tfm 8#define out_blk 12#define in_blk 16/* offsets in crypto_tfm structure */#define ekey (crypto_tfm_ctx_offset + 0)#define nrnd (crypto_tfm_ctx_offset + 256)#define dkey (crypto_tfm_ctx_offset + 260)// register mapping for encrypt and decrypt subroutines#define r0  eax#define r1  ebx#define r2  ecx#define r3  edx#define r4  esi#define r5  edi#define eaxl  al#define eaxh  ah#define ebxl  bl#define ebxh  bh#define ecxl  cl#define ecxh  ch#define edxl  dl#define edxh  dh#define _h(reg) reg##h#define h(reg) _h(reg)#define _l(reg) reg##l#define l(reg) _l(reg)// This macro takes a 32-bit word representing a column and uses// each of its four bytes to index into four tables of 256 32-bit// words to obtain values that are then xored into the appropriate// output registers r0, r1, r4 or r5.  // Parameters:// table table base address//   %1  out_state[0]//   %2  out_state[1]//   %3  out_state[2]//   %4  out_state[3]//   idx input register for the round (destroyed)//   tmp scratch register for the round// sched key schedule#define do_col(table, a1,a2,a3,a4, idx, tmp)	\	movzx   %l(idx),%tmp;			\	xor     table(,%tmp,4),%a1;		\	movzx   %h(idx),%tmp;			\	shr     $16,%idx;			\	xor     table+tlen(,%tmp,4),%a2;	\	movzx   %l(idx),%tmp;			\	movzx   %h(idx),%idx;			\	xor     table+2*tlen(,%tmp,4),%a3;	\	xor     table+3*tlen(,%idx,4),%a4;// initialise output registers from the key schedule// NB1: original value of a3 is in idx on exit// NB2: original values of a1,a2,a4 aren't used#define do_fcol(table, a1,a2,a3,a4, idx, tmp, sched) \	mov     0 sched,%a1;			\	movzx   %l(idx),%tmp;			\	mov     12 sched,%a2;			\	xor     table(,%tmp,4),%a1;		\	mov     4 sched,%a4;			\	movzx   %h(idx),%tmp;			\	shr     $16,%idx;			\	xor     table+tlen(,%tmp,4),%a2;	\	movzx   %l(idx),%tmp;			\	movzx   %h(idx),%idx;			\	xor     table+3*tlen(,%idx,4),%a4;	\	mov     %a3,%idx;			\	mov     8 sched,%a3;			\	xor     table+2*tlen(,%tmp,4),%a3;// initialise output registers from the key schedule// NB1: original value of a3 is in idx on exit// NB2: original values of a1,a2,a4 aren't used#define do_icol(table, a1,a2,a3,a4, idx, tmp, sched) \	mov     0 sched,%a1;			\	movzx   %l(idx),%tmp;			\	mov     4 sched,%a2;			\	xor     table(,%tmp,4),%a1;		\	mov     12 sched,%a4;			\	movzx   %h(idx),%tmp;			\	shr     $16,%idx;			\	xor     table+tlen(,%tmp,4),%a2;	\	movzx   %l(idx),%tmp;			\	movzx   %h(idx),%idx;			\	xor     table+3*tlen(,%idx,4),%a4;	\	mov     %a3,%idx;			\	mov     8 sched,%a3;			\	xor     table+2*tlen(,%tmp,4),%a3;// original Gladman had conditional saves to MMX regs.#define save(a1, a2)		\	mov     %a2,4*a1(%esp)#define restore(a1, a2)		\	mov     4*a2(%esp),%a1// These macros perform a forward encryption cycle. They are entered with// the first previous round column values in r0,r1,r4,r5 and// exit with the final values in the same registers, using stack// for temporary storage.// round column values// on entry: r0,r1,r4,r5// on exit:  r2,r1,r4,r5#define fwd_rnd1(arg, table)						\	save   (0,r1);							\	save   (1,r5);							\									\	/* compute new column values */					\	do_fcol(table, r2,r5,r4,r1, r0,r3, arg);	/* idx=r0 */	\	do_col (table, r4,r1,r2,r5, r0,r3);		/* idx=r4 */	\	restore(r0,0);							\	do_col (table, r1,r2,r5,r4, r0,r3);		/* idx=r1 */	\	restore(r0,1);							\	do_col (table, r5,r4,r1,r2, r0,r3);		/* idx=r5 */// round column values// on entry: r2,r1,r4,r5// on exit:  r0,r1,r4,r5#define fwd_rnd2(arg, table)						\	save   (0,r1);							\	save   (1,r5);							\									\	/* compute new column values */					\	do_fcol(table, r0,r5,r4,r1, r2,r3, arg);	/* idx=r2 */	\	do_col (table, r4,r1,r0,r5, r2,r3);		/* idx=r4 */	\	restore(r2,0);							\	do_col (table, r1,r0,r5,r4, r2,r3);		/* idx=r1 */	\	restore(r2,1);							\	do_col (table, r5,r4,r1,r0, r2,r3);		/* idx=r5 */// These macros performs an inverse encryption cycle. They are entered with// the first previous round column values in r0,r1,r4,r5 and// exit with the final values in the same registers, using stack// for temporary storage// round column values// on entry: r0,r1,r4,r5// on exit:  r2,r1,r4,r5#define inv_rnd1(arg, table)						\	save    (0,r1);							\	save    (1,r5);							\									\	/* compute new column values */					\	do_icol(table, r2,r1,r4,r5, r0,r3, arg);	/* idx=r0 */	\	do_col (table, r4,r5,r2,r1, r0,r3);		/* idx=r4 */	\	restore(r0,0);							\	do_col (table, r1,r4,r5,r2, r0,r3);		/* idx=r1 */	\	restore(r0,1);							\	do_col (table, r5,r2,r1,r4, r0,r3);		/* idx=r5 */// round column values// on entry: r2,r1,r4,r5// on exit:  r0,r1,r4,r5#define inv_rnd2(arg, table)						\	save    (0,r1);							\	save    (1,r5);							\									\	/* compute new column values */					\	do_icol(table, r0,r1,r4,r5, r2,r3, arg);	/* idx=r2 */	\	do_col (table, r4,r5,r0,r1, r2,r3);		/* idx=r4 */	\	restore(r2,0);							\	do_col (table, r1,r4,r5,r0, r2,r3);		/* idx=r1 */	\	restore(r2,1);							\	do_col (table, r5,r0,r1,r4, r2,r3);		/* idx=r5 */// AES (Rijndael) Encryption Subroutine/* void aes_enc_blk(struct crypto_tfm *tfm, u8 *out_blk, const u8 *in_blk) */.global  aes_enc_blk.extern  ft_tab.extern  fl_tab.align 4aes_enc_blk:	push    %ebp	mov     tfm(%esp),%ebp// CAUTION: the order and the values used in these assigns // rely on the register mappings1:	push    %ebx	mov     in_blk+4(%esp),%r2	push    %esi	mov     nrnd(%ebp),%r3   // number of rounds	push    %edi#if ekey != 0	lea     ekey(%ebp),%ebp  // key pointer#endif// input four columns and xor in first round key	mov     (%r2),%r0	mov     4(%r2),%r1	mov     8(%r2),%r4	mov     12(%r2),%r5	xor     (%ebp),%r0	xor     4(%ebp),%r1	xor     8(%ebp),%r4	xor     12(%ebp),%r5	sub     $8,%esp		// space for register saves on stack	add     $16,%ebp	// increment to next round key	cmp     $12,%r3	jb      4f		// 10 rounds for 128-bit key	lea     32(%ebp),%ebp	je      3f		// 12 rounds for 192-bit key	lea     32(%ebp),%ebp2:	fwd_rnd1( -64(%ebp) ,ft_tab)	// 14 rounds for 256-bit key	fwd_rnd2( -48(%ebp) ,ft_tab)3:	fwd_rnd1( -32(%ebp) ,ft_tab)	// 12 rounds for 192-bit key	fwd_rnd2( -16(%ebp) ,ft_tab)4:	fwd_rnd1(    (%ebp) ,ft_tab)	// 10 rounds for 128-bit key	fwd_rnd2( +16(%ebp) ,ft_tab)	fwd_rnd1( +32(%ebp) ,ft_tab)	fwd_rnd2( +48(%ebp) ,ft_tab)	fwd_rnd1( +64(%ebp) ,ft_tab)	fwd_rnd2( +80(%ebp) ,ft_tab)	fwd_rnd1( +96(%ebp) ,ft_tab)	fwd_rnd2(+112(%ebp) ,ft_tab)	fwd_rnd1(+128(%ebp) ,ft_tab)	fwd_rnd2(+144(%ebp) ,fl_tab)	// last round uses a different table// move final values to the output array.  CAUTION: the // order of these assigns rely on the register mappings	add     $8,%esp	mov     out_blk+12(%esp),%ebp	mov     %r5,12(%ebp)	pop     %edi	mov     %r4,8(%ebp)	pop     %esi	mov     %r1,4(%ebp)	pop     %ebx	mov     %r0,(%ebp)	pop     %ebp	mov     $1,%eax	ret// AES (Rijndael) Decryption Subroutine/* void aes_dec_blk(struct crypto_tfm *tfm, u8 *out_blk, const u8 *in_blk) */.global  aes_dec_blk.extern  it_tab.extern  il_tab.align 4aes_dec_blk:	push    %ebp	mov     tfm(%esp),%ebp// CAUTION: the order and the values used in these assigns // rely on the register mappings1:	push    %ebx	mov     in_blk+4(%esp),%r2	push    %esi	mov     nrnd(%ebp),%r3   // number of rounds	push    %edi#if dkey != 0	lea     dkey(%ebp),%ebp  // key pointer#endif	mov     %r3,%r0	shl     $4,%r0	add     %r0,%ebp	// input four columns and xor in first round key	mov     (%r2),%r0	mov     4(%r2),%r1	mov     8(%r2),%r4	mov     12(%r2),%r5	xor     (%ebp),%r0	xor     4(%ebp),%r1	xor     8(%ebp),%r4	xor     12(%ebp),%r5	sub     $8,%esp		// space for register saves on stack	sub     $16,%ebp	// increment to next round key	cmp     $12,%r3	jb      4f		// 10 rounds for 128-bit key	lea     -32(%ebp),%ebp	je      3f		// 12 rounds for 192-bit key	lea     -32(%ebp),%ebp2:	inv_rnd1( +64(%ebp), it_tab)	// 14 rounds for 256-bit key	inv_rnd2( +48(%ebp), it_tab)3:	inv_rnd1( +32(%ebp), it_tab)	// 12 rounds for 192-bit key	inv_rnd2( +16(%ebp), it_tab)4:	inv_rnd1(    (%ebp), it_tab)	// 10 rounds for 128-bit key	inv_rnd2( -16(%ebp), it_tab)	inv_rnd1( -32(%ebp), it_tab)	inv_rnd2( -48(%ebp), it_tab)	inv_rnd1( -64(%ebp), it_tab)	inv_rnd2( -80(%ebp), it_tab)	inv_rnd1( -96(%ebp), it_tab)	inv_rnd2(-112(%ebp), it_tab)	inv_rnd1(-128(%ebp), it_tab)	inv_rnd2(-144(%ebp), il_tab)	// last round uses a different table// move final values to the output array.  CAUTION: the // order of these assigns rely on the register mappings	add     $8,%esp	mov     out_blk+12(%esp),%ebp	mov     %r5,12(%ebp)	pop     %edi	mov     %r4,8(%ebp)	pop     %esi	mov     %r1,4(%ebp)	pop     %ebx	mov     %r0,(%ebp)	pop     %ebp	mov     $1,%eax	ret

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -