⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 discontig_32.c

📁 linux 内核源代码
💻 C
字号:
/* * Written by: Patricia Gaughen <gone@us.ibm.com>, IBM Corporation * August 2002: added remote node KVA remap - Martin J. Bligh  * * Copyright (C) 2002, IBM Corp. * * All rights reserved.           * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or * NON INFRINGEMENT.  See the GNU General Public License for more * details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */#include <linux/mm.h>#include <linux/bootmem.h>#include <linux/mmzone.h>#include <linux/highmem.h>#include <linux/initrd.h>#include <linux/nodemask.h>#include <linux/module.h>#include <linux/kexec.h>#include <linux/pfn.h>#include <linux/swap.h>#include <asm/e820.h>#include <asm/setup.h>#include <asm/mmzone.h>#include <bios_ebda.h>struct pglist_data *node_data[MAX_NUMNODES] __read_mostly;EXPORT_SYMBOL(node_data);static bootmem_data_t node0_bdata;/* * numa interface - we expect the numa architecture specific code to have *                  populated the following initialisation. * * 1) node_online_map  - the map of all nodes configured (online) in the system * 2) node_start_pfn   - the starting page frame number for a node * 3) node_end_pfn     - the ending page fram number for a node */unsigned long node_start_pfn[MAX_NUMNODES] __read_mostly;unsigned long node_end_pfn[MAX_NUMNODES] __read_mostly;#ifdef CONFIG_DISCONTIGMEM/* * 4) physnode_map     - the mapping between a pfn and owning node * physnode_map keeps track of the physical memory layout of a generic * numa node on a 256Mb break (each element of the array will * represent 256Mb of memory and will be marked by the node id.  so, * if the first gig is on node 0, and the second gig is on node 1 * physnode_map will contain: * *     physnode_map[0-3] = 0; *     physnode_map[4-7] = 1; *     physnode_map[8- ] = -1; */s8 physnode_map[MAX_ELEMENTS] __read_mostly = { [0 ... (MAX_ELEMENTS - 1)] = -1};EXPORT_SYMBOL(physnode_map);void memory_present(int nid, unsigned long start, unsigned long end){	unsigned long pfn;	printk(KERN_INFO "Node: %d, start_pfn: %ld, end_pfn: %ld\n",			nid, start, end);	printk(KERN_DEBUG "  Setting physnode_map array to node %d for pfns:\n", nid);	printk(KERN_DEBUG "  ");	for (pfn = start; pfn < end; pfn += PAGES_PER_ELEMENT) {		physnode_map[pfn / PAGES_PER_ELEMENT] = nid;		printk("%ld ", pfn);	}	printk("\n");}unsigned long node_memmap_size_bytes(int nid, unsigned long start_pfn,					      unsigned long end_pfn){	unsigned long nr_pages = end_pfn - start_pfn;	if (!nr_pages)		return 0;	return (nr_pages + 1) * sizeof(struct page);}#endifextern unsigned long find_max_low_pfn(void);extern void add_one_highpage_init(struct page *, int, int);extern unsigned long highend_pfn, highstart_pfn;#define LARGE_PAGE_BYTES (PTRS_PER_PTE * PAGE_SIZE)static unsigned long node_remap_start_pfn[MAX_NUMNODES];unsigned long node_remap_size[MAX_NUMNODES];static unsigned long node_remap_offset[MAX_NUMNODES];static void *node_remap_start_vaddr[MAX_NUMNODES];void set_pmd_pfn(unsigned long vaddr, unsigned long pfn, pgprot_t flags);static void *node_remap_end_vaddr[MAX_NUMNODES];static void *node_remap_alloc_vaddr[MAX_NUMNODES];static unsigned long kva_start_pfn;static unsigned long kva_pages;/* * FLAT - support for basic PC memory model with discontig enabled, essentially *        a single node with all available processors in it with a flat *        memory map. */int __init get_memcfg_numa_flat(void){	printk("NUMA - single node, flat memory mode\n");	/* Run the memory configuration and find the top of memory. */	find_max_pfn();	node_start_pfn[0] = 0;	node_end_pfn[0] = max_pfn;	memory_present(0, 0, max_pfn);        /* Indicate there is one node available. */	nodes_clear(node_online_map);	node_set_online(0);	return 1;}/* * Find the highest page frame number we have available for the node */static void __init find_max_pfn_node(int nid){	if (node_end_pfn[nid] > max_pfn)		node_end_pfn[nid] = max_pfn;	/*	 * if a user has given mem=XXXX, then we need to make sure 	 * that the node _starts_ before that, too, not just ends	 */	if (node_start_pfn[nid] > max_pfn)		node_start_pfn[nid] = max_pfn;	BUG_ON(node_start_pfn[nid] > node_end_pfn[nid]);}/*  * Allocate memory for the pg_data_t for this node via a crude pre-bootmem * method.  For node zero take this from the bottom of memory, for * subsequent nodes place them at node_remap_start_vaddr which contains * node local data in physically node local memory.  See setup_memory() * for details. */static void __init allocate_pgdat(int nid){	if (nid && node_has_online_mem(nid))		NODE_DATA(nid) = (pg_data_t *)node_remap_start_vaddr[nid];	else {		NODE_DATA(nid) = (pg_data_t *)(pfn_to_kaddr(min_low_pfn));		min_low_pfn += PFN_UP(sizeof(pg_data_t));	}}void *alloc_remap(int nid, unsigned long size){	void *allocation = node_remap_alloc_vaddr[nid];	size = ALIGN(size, L1_CACHE_BYTES);	if (!allocation || (allocation + size) >= node_remap_end_vaddr[nid])		return 0;	node_remap_alloc_vaddr[nid] += size;	memset(allocation, 0, size);	return allocation;}void __init remap_numa_kva(void){	void *vaddr;	unsigned long pfn;	int node;	for_each_online_node(node) {		for (pfn=0; pfn < node_remap_size[node]; pfn += PTRS_PER_PTE) {			vaddr = node_remap_start_vaddr[node]+(pfn<<PAGE_SHIFT);			set_pmd_pfn((ulong) vaddr, 				node_remap_start_pfn[node] + pfn, 				PAGE_KERNEL_LARGE);		}	}}static unsigned long calculate_numa_remap_pages(void){	int nid;	unsigned long size, reserve_pages = 0;	unsigned long pfn;	for_each_online_node(nid) {		unsigned old_end_pfn = node_end_pfn[nid];		/*		 * The acpi/srat node info can show hot-add memroy zones		 * where memory could be added but not currently present.		 */		if (node_start_pfn[nid] > max_pfn)			continue;		if (node_end_pfn[nid] > max_pfn)			node_end_pfn[nid] = max_pfn;		/* ensure the remap includes space for the pgdat. */		size = node_remap_size[nid] + sizeof(pg_data_t);		/* convert size to large (pmd size) pages, rounding up */		size = (size + LARGE_PAGE_BYTES - 1) / LARGE_PAGE_BYTES;		/* now the roundup is correct, convert to PAGE_SIZE pages */		size = size * PTRS_PER_PTE;		/*		 * Validate the region we are allocating only contains valid		 * pages.		 */		for (pfn = node_end_pfn[nid] - size;		     pfn < node_end_pfn[nid]; pfn++)			if (!page_is_ram(pfn))				break;		if (pfn != node_end_pfn[nid])			size = 0;		printk("Reserving %ld pages of KVA for lmem_map of node %d\n",				size, nid);		node_remap_size[nid] = size;		node_remap_offset[nid] = reserve_pages;		reserve_pages += size;		printk("Shrinking node %d from %ld pages to %ld pages\n",			nid, node_end_pfn[nid], node_end_pfn[nid] - size);		if (node_end_pfn[nid] & (PTRS_PER_PTE-1)) {			/*			 * Align node_end_pfn[] and node_remap_start_pfn[] to			 * pmd boundary. remap_numa_kva will barf otherwise.			 */			printk("Shrinking node %d further by %ld pages for proper alignment\n",				nid, node_end_pfn[nid] & (PTRS_PER_PTE-1));			size +=  node_end_pfn[nid] & (PTRS_PER_PTE-1);		}		node_end_pfn[nid] -= size;		node_remap_start_pfn[nid] = node_end_pfn[nid];		shrink_active_range(nid, old_end_pfn, node_end_pfn[nid]);	}	printk("Reserving total of %ld pages for numa KVA remap\n",			reserve_pages);	return reserve_pages;}extern void setup_bootmem_allocator(void);unsigned long __init setup_memory(void){	int nid;	unsigned long system_start_pfn, system_max_low_pfn;	/*	 * When mapping a NUMA machine we allocate the node_mem_map arrays	 * from node local memory.  They are then mapped directly into KVA	 * between zone normal and vmalloc space.  Calculate the size of	 * this space and use it to adjust the boundary between ZONE_NORMAL	 * and ZONE_HIGHMEM.	 */	find_max_pfn();	get_memcfg_numa();	kva_pages = calculate_numa_remap_pages();	/* partially used pages are not usable - thus round upwards */	system_start_pfn = min_low_pfn = PFN_UP(init_pg_tables_end);	kva_start_pfn = find_max_low_pfn() - kva_pages;#ifdef CONFIG_BLK_DEV_INITRD	/* Numa kva area is below the initrd */	if (boot_params.hdr.type_of_loader && boot_params.hdr.ramdisk_image)		kva_start_pfn = PFN_DOWN(boot_params.hdr.ramdisk_image)			- kva_pages;#endif	kva_start_pfn -= kva_start_pfn & (PTRS_PER_PTE-1);	system_max_low_pfn = max_low_pfn = find_max_low_pfn();	printk("kva_start_pfn ~ %ld find_max_low_pfn() ~ %ld\n",		kva_start_pfn, max_low_pfn);	printk("max_pfn = %ld\n", max_pfn);#ifdef CONFIG_HIGHMEM	highstart_pfn = highend_pfn = max_pfn;	if (max_pfn > system_max_low_pfn)		highstart_pfn = system_max_low_pfn;	printk(KERN_NOTICE "%ldMB HIGHMEM available.\n",	       pages_to_mb(highend_pfn - highstart_pfn));	num_physpages = highend_pfn;	high_memory = (void *) __va(highstart_pfn * PAGE_SIZE - 1) + 1;#else	num_physpages = system_max_low_pfn;	high_memory = (void *) __va(system_max_low_pfn * PAGE_SIZE - 1) + 1;#endif	printk(KERN_NOTICE "%ldMB LOWMEM available.\n",			pages_to_mb(system_max_low_pfn));	printk("min_low_pfn = %ld, max_low_pfn = %ld, highstart_pfn = %ld\n", 			min_low_pfn, max_low_pfn, highstart_pfn);	printk("Low memory ends at vaddr %08lx\n",			(ulong) pfn_to_kaddr(max_low_pfn));	for_each_online_node(nid) {		node_remap_start_vaddr[nid] = pfn_to_kaddr(				kva_start_pfn + node_remap_offset[nid]);		/* Init the node remap allocator */		node_remap_end_vaddr[nid] = node_remap_start_vaddr[nid] +			(node_remap_size[nid] * PAGE_SIZE);		node_remap_alloc_vaddr[nid] = node_remap_start_vaddr[nid] +			ALIGN(sizeof(pg_data_t), PAGE_SIZE);		allocate_pgdat(nid);		printk ("node %d will remap to vaddr %08lx - %08lx\n", nid,			(ulong) node_remap_start_vaddr[nid],			(ulong) pfn_to_kaddr(highstart_pfn			   + node_remap_offset[nid] + node_remap_size[nid]));	}	printk("High memory starts at vaddr %08lx\n",			(ulong) pfn_to_kaddr(highstart_pfn));	for_each_online_node(nid)		find_max_pfn_node(nid);	memset(NODE_DATA(0), 0, sizeof(struct pglist_data));	NODE_DATA(0)->bdata = &node0_bdata;	setup_bootmem_allocator();	return max_low_pfn;}void __init numa_kva_reserve(void){	reserve_bootmem(PFN_PHYS(kva_start_pfn),PFN_PHYS(kva_pages));}void __init zone_sizes_init(void){	int nid;	unsigned long max_zone_pfns[MAX_NR_ZONES];	memset(max_zone_pfns, 0, sizeof(max_zone_pfns));	max_zone_pfns[ZONE_DMA] =		virt_to_phys((char *)MAX_DMA_ADDRESS) >> PAGE_SHIFT;	max_zone_pfns[ZONE_NORMAL] = max_low_pfn;#ifdef CONFIG_HIGHMEM	max_zone_pfns[ZONE_HIGHMEM] = highend_pfn;#endif	/* If SRAT has not registered memory, register it now */	if (find_max_pfn_with_active_regions() == 0) {		for_each_online_node(nid) {			if (node_has_online_mem(nid))				add_active_range(nid, node_start_pfn[nid],							node_end_pfn[nid]);		}	}	free_area_init_nodes(max_zone_pfns);	return;}void __init set_highmem_pages_init(int bad_ppro) {#ifdef CONFIG_HIGHMEM	struct zone *zone;	struct page *page;	for_each_zone(zone) {		unsigned long node_pfn, zone_start_pfn, zone_end_pfn;		if (!is_highmem(zone))			continue;		zone_start_pfn = zone->zone_start_pfn;		zone_end_pfn = zone_start_pfn + zone->spanned_pages;		printk("Initializing %s for node %d (%08lx:%08lx)\n",				zone->name, zone_to_nid(zone),				zone_start_pfn, zone_end_pfn);		for (node_pfn = zone_start_pfn; node_pfn < zone_end_pfn; node_pfn++) {			if (!pfn_valid(node_pfn))				continue;			page = pfn_to_page(node_pfn);			add_one_highpage_init(page, node_pfn, bad_ppro);		}	}	totalram_pages += totalhigh_pages;#endif}#ifdef CONFIG_MEMORY_HOTPLUGstatic int paddr_to_nid(u64 addr){	int nid;	unsigned long pfn = PFN_DOWN(addr);	for_each_node(nid)		if (node_start_pfn[nid] <= pfn &&		    pfn < node_end_pfn[nid])			return nid;	return -1;}/* * This function is used to ask node id BEFORE memmap and mem_section's * initialization (pfn_to_nid() can't be used yet). * If _PXM is not defined on ACPI's DSDT, node id must be found by this. */int memory_add_physaddr_to_nid(u64 addr){	int nid = paddr_to_nid(addr);	return (nid >= 0) ? nid : 0;}EXPORT_SYMBOL_GPL(memory_add_physaddr_to_nid);#endif

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -