⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 smp.c

📁 linux 内核源代码
💻 C
字号:
/* * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA  02111-1307, USA. * * Copyright (C) 2000, 2001 Kanoj Sarcar * Copyright (C) 2000, 2001 Ralf Baechle * Copyright (C) 2000, 2001 Silicon Graphics, Inc. * Copyright (C) 2000, 2001, 2003 Broadcom Corporation */#include <linux/cache.h>#include <linux/delay.h>#include <linux/init.h>#include <linux/interrupt.h>#include <linux/spinlock.h>#include <linux/threads.h>#include <linux/module.h>#include <linux/time.h>#include <linux/timex.h>#include <linux/sched.h>#include <linux/cpumask.h>#include <linux/cpu.h>#include <linux/err.h>#include <asm/atomic.h>#include <asm/cpu.h>#include <asm/processor.h>#include <asm/system.h>#include <asm/mmu_context.h>#include <asm/smp.h>#include <asm/time.h>#ifdef CONFIG_MIPS_MT_SMTC#include <asm/mipsmtregs.h>#endif /* CONFIG_MIPS_MT_SMTC */cpumask_t phys_cpu_present_map;		/* Bitmask of available CPUs */volatile cpumask_t cpu_callin_map;	/* Bitmask of started secondaries */cpumask_t cpu_online_map;		/* Bitmask of currently online CPUs */int __cpu_number_map[NR_CPUS];		/* Map physical to logical */int __cpu_logical_map[NR_CPUS];		/* Map logical to physical */EXPORT_SYMBOL(phys_cpu_present_map);EXPORT_SYMBOL(cpu_online_map);extern void __init calibrate_delay(void);extern void cpu_idle(void);/* * First C code run on the secondary CPUs after being started up by * the master. */asmlinkage __cpuinit void start_secondary(void){	unsigned int cpu;#ifdef CONFIG_MIPS_MT_SMTC	/* Only do cpu_probe for first TC of CPU */	if ((read_c0_tcbind() & TCBIND_CURTC) == 0)#endif /* CONFIG_MIPS_MT_SMTC */	cpu_probe();	cpu_report();	per_cpu_trap_init();	mips_clockevent_init();	prom_init_secondary();	/*	 * XXX parity protection should be folded in here when it's converted	 * to an option instead of something based on .cputype	 */	calibrate_delay();	preempt_disable();	cpu = smp_processor_id();	cpu_data[cpu].udelay_val = loops_per_jiffy;	prom_smp_finish();	cpu_set(cpu, cpu_callin_map);	cpu_idle();}DEFINE_SPINLOCK(smp_call_lock);struct call_data_struct *call_data;/* * Run a function on all other CPUs. * *  <mask>	cpuset_t of all processors to run the function on. *  <func>      The function to run. This must be fast and non-blocking. *  <info>      An arbitrary pointer to pass to the function. *  <retry>     If true, keep retrying until ready. *  <wait>      If true, wait until function has completed on other CPUs. *  [RETURNS]   0 on success, else a negative status code. * * Does not return until remote CPUs are nearly ready to execute <func> * or are or have executed. * * You must not call this function with disabled interrupts or from a * hardware interrupt handler or from a bottom half handler: * * CPU A                               CPU B * Disable interrupts *                                     smp_call_function() *                                     Take call_lock *                                     Send IPIs *                                     Wait for all cpus to acknowledge IPI *                                     CPU A has not responded, spin waiting *                                     for cpu A to respond, holding call_lock * smp_call_function() * Spin waiting for call_lock * Deadlock                            Deadlock */int smp_call_function_mask(cpumask_t mask, void (*func) (void *info),	void *info, int retry, int wait){	struct call_data_struct data;	int cpu = smp_processor_id();	int cpus;	/*	 * Can die spectacularly if this CPU isn't yet marked online	 */	BUG_ON(!cpu_online(cpu));	cpu_clear(cpu, mask);	cpus = cpus_weight(mask);	if (!cpus)		return 0;	/* Can deadlock when called with interrupts disabled */	WARN_ON(irqs_disabled());	data.func = func;	data.info = info;	atomic_set(&data.started, 0);	data.wait = wait;	if (wait)		atomic_set(&data.finished, 0);	spin_lock(&smp_call_lock);	call_data = &data;	smp_mb();	/* Send a message to all other CPUs and wait for them to respond */	core_send_ipi_mask(mask, SMP_CALL_FUNCTION);	/* Wait for response */	/* FIXME: lock-up detection, backtrace on lock-up */	while (atomic_read(&data.started) != cpus)		barrier();	if (wait)		while (atomic_read(&data.finished) != cpus)			barrier();	call_data = NULL;	spin_unlock(&smp_call_lock);	return 0;}int smp_call_function(void (*func) (void *info), void *info, int retry,	int wait){	return smp_call_function_mask(cpu_online_map, func, info, retry, wait);}void smp_call_function_interrupt(void){	void (*func) (void *info) = call_data->func;	void *info = call_data->info;	int wait = call_data->wait;	/*	 * Notify initiating CPU that I've grabbed the data and am	 * about to execute the function.	 */	smp_mb();	atomic_inc(&call_data->started);	/*	 * At this point the info structure may be out of scope unless wait==1.	 */	irq_enter();	(*func)(info);	irq_exit();	if (wait) {		smp_mb();		atomic_inc(&call_data->finished);	}}int smp_call_function_single(int cpu, void (*func) (void *info), void *info,			     int retry, int wait){	int ret, me;	/*	 * Can die spectacularly if this CPU isn't yet marked online	 */	if (!cpu_online(cpu))		return 0;	me = get_cpu();	BUG_ON(!cpu_online(me));	if (cpu == me) {		local_irq_disable();		func(info);		local_irq_enable();		put_cpu();		return 0;	}	ret = smp_call_function_mask(cpumask_of_cpu(cpu), func, info, retry,				     wait);	put_cpu();	return 0;}static void stop_this_cpu(void *dummy){	/*	 * Remove this CPU:	 */	cpu_clear(smp_processor_id(), cpu_online_map);	local_irq_enable();	/* May need to service _machine_restart IPI */	for (;;);		/* Wait if available. */}void smp_send_stop(void){	smp_call_function(stop_this_cpu, NULL, 1, 0);}void __init smp_cpus_done(unsigned int max_cpus){	prom_cpus_done();}/* called from main before smp_init() */void __init smp_prepare_cpus(unsigned int max_cpus){	init_new_context(current, &init_mm);	current_thread_info()->cpu = 0;	plat_prepare_cpus(max_cpus);#ifndef CONFIG_HOTPLUG_CPU	cpu_present_map = cpu_possible_map;#endif}/* preload SMP state for boot cpu */void __devinit smp_prepare_boot_cpu(void){	/*	 * This assumes that bootup is always handled by the processor	 * with the logic and physical number 0.	 */	__cpu_number_map[0] = 0;	__cpu_logical_map[0] = 0;	cpu_set(0, phys_cpu_present_map);	cpu_set(0, cpu_online_map);	cpu_set(0, cpu_callin_map);}/* * Called once for each "cpu_possible(cpu)".  Needs to spin up the cpu * and keep control until "cpu_online(cpu)" is set.  Note: cpu is * physical, not logical. */int __cpuinit __cpu_up(unsigned int cpu){	struct task_struct *idle;	/*	 * Processor goes to start_secondary(), sets online flag	 * The following code is purely to make sure	 * Linux can schedule processes on this slave.	 */	idle = fork_idle(cpu);	if (IS_ERR(idle))		panic(KERN_ERR "Fork failed for CPU %d", cpu);	prom_boot_secondary(cpu, idle);	/*	 * Trust is futile.  We should really have timeouts ...	 */	while (!cpu_isset(cpu, cpu_callin_map))		udelay(100);	cpu_set(cpu, cpu_online_map);	return 0;}/* Not really SMP stuff ... */int setup_profiling_timer(unsigned int multiplier){	return 0;}static void flush_tlb_all_ipi(void *info){	local_flush_tlb_all();}void flush_tlb_all(void){	on_each_cpu(flush_tlb_all_ipi, NULL, 1, 1);}static void flush_tlb_mm_ipi(void *mm){	local_flush_tlb_mm((struct mm_struct *)mm);}/* * Special Variant of smp_call_function for use by TLB functions: * *  o No return value *  o collapses to normal function call on UP kernels *  o collapses to normal function call on systems with a single shared *    primary cache. *  o CONFIG_MIPS_MT_SMTC currently implies there is only one physical core. */static inline void smp_on_other_tlbs(void (*func) (void *info), void *info){#ifndef CONFIG_MIPS_MT_SMTC	smp_call_function(func, info, 1, 1);#endif}static inline void smp_on_each_tlb(void (*func) (void *info), void *info){	preempt_disable();	smp_on_other_tlbs(func, info);	func(info);	preempt_enable();}/* * The following tlb flush calls are invoked when old translations are * being torn down, or pte attributes are changing. For single threaded * address spaces, a new context is obtained on the current cpu, and tlb * context on other cpus are invalidated to force a new context allocation * at switch_mm time, should the mm ever be used on other cpus. For * multithreaded address spaces, intercpu interrupts have to be sent. * Another case where intercpu interrupts are required is when the target * mm might be active on another cpu (eg debuggers doing the flushes on * behalf of debugees, kswapd stealing pages from another process etc). * Kanoj 07/00. */void flush_tlb_mm(struct mm_struct *mm){	preempt_disable();	if ((atomic_read(&mm->mm_users) != 1) || (current->mm != mm)) {		smp_on_other_tlbs(flush_tlb_mm_ipi, mm);	} else {		cpumask_t mask = cpu_online_map;		unsigned int cpu;		cpu_clear(smp_processor_id(), mask);		for_each_cpu_mask(cpu, mask)			if (cpu_context(cpu, mm))				cpu_context(cpu, mm) = 0;	}	local_flush_tlb_mm(mm);	preempt_enable();}struct flush_tlb_data {	struct vm_area_struct *vma;	unsigned long addr1;	unsigned long addr2;};static void flush_tlb_range_ipi(void *info){	struct flush_tlb_data *fd = info;	local_flush_tlb_range(fd->vma, fd->addr1, fd->addr2);}void flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end){	struct mm_struct *mm = vma->vm_mm;	preempt_disable();	if ((atomic_read(&mm->mm_users) != 1) || (current->mm != mm)) {		struct flush_tlb_data fd = {			.vma = vma,			.addr1 = start,			.addr2 = end,		};		smp_on_other_tlbs(flush_tlb_range_ipi, &fd);	} else {		cpumask_t mask = cpu_online_map;		unsigned int cpu;		cpu_clear(smp_processor_id(), mask);		for_each_cpu_mask(cpu, mask)			if (cpu_context(cpu, mm))				cpu_context(cpu, mm) = 0;	}	local_flush_tlb_range(vma, start, end);	preempt_enable();}static void flush_tlb_kernel_range_ipi(void *info){	struct flush_tlb_data *fd = info;	local_flush_tlb_kernel_range(fd->addr1, fd->addr2);}void flush_tlb_kernel_range(unsigned long start, unsigned long end){	struct flush_tlb_data fd = {		.addr1 = start,		.addr2 = end,	};	on_each_cpu(flush_tlb_kernel_range_ipi, &fd, 1, 1);}static void flush_tlb_page_ipi(void *info){	struct flush_tlb_data *fd = info;	local_flush_tlb_page(fd->vma, fd->addr1);}void flush_tlb_page(struct vm_area_struct *vma, unsigned long page){	preempt_disable();	if ((atomic_read(&vma->vm_mm->mm_users) != 1) || (current->mm != vma->vm_mm)) {		struct flush_tlb_data fd = {			.vma = vma,			.addr1 = page,		};		smp_on_other_tlbs(flush_tlb_page_ipi, &fd);	} else {		cpumask_t mask = cpu_online_map;		unsigned int cpu;		cpu_clear(smp_processor_id(), mask);		for_each_cpu_mask(cpu, mask)			if (cpu_context(cpu, vma->vm_mm))				cpu_context(cpu, vma->vm_mm) = 0;	}	local_flush_tlb_page(vma, page);	preempt_enable();}static void flush_tlb_one_ipi(void *info){	unsigned long vaddr = (unsigned long) info;	local_flush_tlb_one(vaddr);}void flush_tlb_one(unsigned long vaddr){	smp_on_each_tlb(flush_tlb_one_ipi, (void *) vaddr);}EXPORT_SYMBOL(flush_tlb_page);EXPORT_SYMBOL(flush_tlb_one);

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -