📄 smp.c
字号:
/* * arch/s390/kernel/smp.c * * Copyright IBM Corp. 1999,2007 * Author(s): Denis Joseph Barrow (djbarrow@de.ibm.com,barrow_dj@yahoo.com), * Martin Schwidefsky (schwidefsky@de.ibm.com) * Heiko Carstens (heiko.carstens@de.ibm.com) * * based on other smp stuff by * (c) 1995 Alan Cox, CymruNET Ltd <alan@cymru.net> * (c) 1998 Ingo Molnar * * We work with logical cpu numbering everywhere we can. The only * functions using the real cpu address (got from STAP) are the sigp * functions. For all other functions we use the identity mapping. * That means that cpu_number_map[i] == i for every cpu. cpu_number_map is * used e.g. to find the idle task belonging to a logical cpu. Every array * in the kernel is sorted by the logical cpu number and not by the physical * one which is causing all the confusion with __cpu_logical_map and * cpu_number_map in other architectures. */#include <linux/module.h>#include <linux/init.h>#include <linux/mm.h>#include <linux/err.h>#include <linux/spinlock.h>#include <linux/kernel_stat.h>#include <linux/delay.h>#include <linux/cache.h>#include <linux/interrupt.h>#include <linux/cpu.h>#include <linux/timex.h>#include <linux/bootmem.h>#include <asm/ipl.h>#include <asm/setup.h>#include <asm/sigp.h>#include <asm/pgalloc.h>#include <asm/irq.h>#include <asm/s390_ext.h>#include <asm/cpcmd.h>#include <asm/tlbflush.h>#include <asm/timer.h>#include <asm/lowcore.h>#include <asm/cpu.h>/* * An array with a pointer the lowcore of every CPU. */struct _lowcore *lowcore_ptr[NR_CPUS];EXPORT_SYMBOL(lowcore_ptr);cpumask_t cpu_online_map = CPU_MASK_NONE;EXPORT_SYMBOL(cpu_online_map);cpumask_t cpu_possible_map = CPU_MASK_NONE;EXPORT_SYMBOL(cpu_possible_map);static struct task_struct *current_set[NR_CPUS];static void smp_ext_bitcall(int, ec_bit_sig);/* * Structure and data for __smp_call_function_map(). This is designed to * minimise static memory requirements. It also looks cleaner. */static DEFINE_SPINLOCK(call_lock);struct call_data_struct { void (*func) (void *info); void *info; cpumask_t started; cpumask_t finished; int wait;};static struct call_data_struct *call_data;/* * 'Call function' interrupt callback */static void do_call_function(void){ void (*func) (void *info) = call_data->func; void *info = call_data->info; int wait = call_data->wait; cpu_set(smp_processor_id(), call_data->started); (*func)(info); if (wait) cpu_set(smp_processor_id(), call_data->finished);;}static void __smp_call_function_map(void (*func) (void *info), void *info, int nonatomic, int wait, cpumask_t map){ struct call_data_struct data; int cpu, local = 0; /* * Can deadlock when interrupts are disabled or if in wrong context. */ WARN_ON(irqs_disabled() || in_irq()); /* * Check for local function call. We have to have the same call order * as in on_each_cpu() because of machine_restart_smp(). */ if (cpu_isset(smp_processor_id(), map)) { local = 1; cpu_clear(smp_processor_id(), map); } cpus_and(map, map, cpu_online_map); if (cpus_empty(map)) goto out; data.func = func; data.info = info; data.started = CPU_MASK_NONE; data.wait = wait; if (wait) data.finished = CPU_MASK_NONE; spin_lock(&call_lock); call_data = &data; for_each_cpu_mask(cpu, map) smp_ext_bitcall(cpu, ec_call_function); /* Wait for response */ while (!cpus_equal(map, data.started)) cpu_relax(); if (wait) while (!cpus_equal(map, data.finished)) cpu_relax(); spin_unlock(&call_lock);out: if (local) { local_irq_disable(); func(info); local_irq_enable(); }}/* * smp_call_function: * @func: the function to run; this must be fast and non-blocking * @info: an arbitrary pointer to pass to the function * @nonatomic: unused * @wait: if true, wait (atomically) until function has completed on other CPUs * * Run a function on all other CPUs. * * You must not call this function with disabled interrupts, from a * hardware interrupt handler or from a bottom half. */int smp_call_function(void (*func) (void *info), void *info, int nonatomic, int wait){ cpumask_t map; preempt_disable(); map = cpu_online_map; cpu_clear(smp_processor_id(), map); __smp_call_function_map(func, info, nonatomic, wait, map); preempt_enable(); return 0;}EXPORT_SYMBOL(smp_call_function);/* * smp_call_function_single: * @cpu: the CPU where func should run * @func: the function to run; this must be fast and non-blocking * @info: an arbitrary pointer to pass to the function * @nonatomic: unused * @wait: if true, wait (atomically) until function has completed on other CPUs * * Run a function on one processor. * * You must not call this function with disabled interrupts, from a * hardware interrupt handler or from a bottom half. */int smp_call_function_single(int cpu, void (*func) (void *info), void *info, int nonatomic, int wait){ preempt_disable(); __smp_call_function_map(func, info, nonatomic, wait, cpumask_of_cpu(cpu)); preempt_enable(); return 0;}EXPORT_SYMBOL(smp_call_function_single);void smp_send_stop(void){ int cpu, rc; /* Disable all interrupts/machine checks */ __load_psw_mask(psw_kernel_bits & ~PSW_MASK_MCHECK); /* write magic number to zero page (absolute 0) */ lowcore_ptr[smp_processor_id()]->panic_magic = __PANIC_MAGIC; /* stop all processors */ for_each_online_cpu(cpu) { if (cpu == smp_processor_id()) continue; do { rc = signal_processor(cpu, sigp_stop); } while (rc == sigp_busy); while (!smp_cpu_not_running(cpu)) cpu_relax(); }}/* * Reboot, halt and power_off routines for SMP. */void machine_restart_smp(char *__unused){ smp_send_stop(); do_reipl();}void machine_halt_smp(void){ smp_send_stop(); if (MACHINE_IS_VM && strlen(vmhalt_cmd) > 0) __cpcmd(vmhalt_cmd, NULL, 0, NULL); signal_processor(smp_processor_id(), sigp_stop_and_store_status); for (;;);}void machine_power_off_smp(void){ smp_send_stop(); if (MACHINE_IS_VM && strlen(vmpoff_cmd) > 0) __cpcmd(vmpoff_cmd, NULL, 0, NULL); signal_processor(smp_processor_id(), sigp_stop_and_store_status); for (;;);}/* * This is the main routine where commands issued by other * cpus are handled. */static void do_ext_call_interrupt(__u16 code){ unsigned long bits; /* * handle bit signal external calls * * For the ec_schedule signal we have to do nothing. All the work * is done automatically when we return from the interrupt. */ bits = xchg(&S390_lowcore.ext_call_fast, 0); if (test_bit(ec_call_function, &bits)) do_call_function();}/* * Send an external call sigp to another cpu and return without waiting * for its completion. */static void smp_ext_bitcall(int cpu, ec_bit_sig sig){ /* * Set signaling bit in lowcore of target cpu and kick it */ set_bit(sig, (unsigned long *) &lowcore_ptr[cpu]->ext_call_fast); while (signal_processor(cpu, sigp_emergency_signal) == sigp_busy) udelay(10);}#ifndef CONFIG_64BIT/* * this function sends a 'purge tlb' signal to another CPU. */void smp_ptlb_callback(void *info){ __tlb_flush_local();}void smp_ptlb_all(void){ on_each_cpu(smp_ptlb_callback, NULL, 0, 1);}EXPORT_SYMBOL(smp_ptlb_all);#endif /* ! CONFIG_64BIT *//* * this function sends a 'reschedule' IPI to another CPU. * it goes straight through and wastes no time serializing * anything. Worst case is that we lose a reschedule ... */void smp_send_reschedule(int cpu){ smp_ext_bitcall(cpu, ec_schedule);}/* * parameter area for the set/clear control bit callbacks */struct ec_creg_mask_parms { unsigned long orvals[16]; unsigned long andvals[16];};/* * callback for setting/clearing control bits */static void smp_ctl_bit_callback(void *info){ struct ec_creg_mask_parms *pp = info; unsigned long cregs[16]; int i; __ctl_store(cregs, 0, 15); for (i = 0; i <= 15; i++) cregs[i] = (cregs[i] & pp->andvals[i]) | pp->orvals[i]; __ctl_load(cregs, 0, 15);}/* * Set a bit in a control register of all cpus */void smp_ctl_set_bit(int cr, int bit){ struct ec_creg_mask_parms parms; memset(&parms.orvals, 0, sizeof(parms.orvals)); memset(&parms.andvals, 0xff, sizeof(parms.andvals)); parms.orvals[cr] = 1 << bit; on_each_cpu(smp_ctl_bit_callback, &parms, 0, 1);}EXPORT_SYMBOL(smp_ctl_set_bit);/* * Clear a bit in a control register of all cpus */void smp_ctl_clear_bit(int cr, int bit){ struct ec_creg_mask_parms parms; memset(&parms.orvals, 0, sizeof(parms.orvals)); memset(&parms.andvals, 0xff, sizeof(parms.andvals)); parms.andvals[cr] = ~(1L << bit); on_each_cpu(smp_ctl_bit_callback, &parms, 0, 1);}EXPORT_SYMBOL(smp_ctl_clear_bit);#if defined(CONFIG_ZFCPDUMP) || defined(CONFIG_ZFCPDUMP_MODULE)/* * zfcpdump_prefix_array holds prefix registers for the following scenario: * 64 bit zfcpdump kernel and 31 bit kernel which is to be dumped. We have to * save its prefix registers, since they get lost, when switching from 31 bit * to 64 bit. */unsigned int zfcpdump_prefix_array[NR_CPUS + 1] \ __attribute__((__section__(".data")));static void __init smp_get_save_area(unsigned int cpu, unsigned int phy_cpu){ if (ipl_info.type != IPL_TYPE_FCP_DUMP) return; if (cpu >= NR_CPUS) { printk(KERN_WARNING "Registers for cpu %i not saved since dump " "kernel was compiled with NR_CPUS=%i\n", cpu, NR_CPUS); return; } zfcpdump_save_areas[cpu] = alloc_bootmem(sizeof(union save_area)); __cpu_logical_map[1] = (__u16) phy_cpu; while (signal_processor(1, sigp_stop_and_store_status) == sigp_busy) cpu_relax(); memcpy(zfcpdump_save_areas[cpu], (void *)(unsigned long) store_prefix() + SAVE_AREA_BASE, SAVE_AREA_SIZE);#ifdef CONFIG_64BIT /* copy original prefix register */ zfcpdump_save_areas[cpu]->s390x.pref_reg = zfcpdump_prefix_array[cpu];#endif}union save_area *zfcpdump_save_areas[NR_CPUS + 1];EXPORT_SYMBOL_GPL(zfcpdump_save_areas);#elsestatic inline void smp_get_save_area(unsigned int cpu, unsigned int phy_cpu) { }#endif /* CONFIG_ZFCPDUMP || CONFIG_ZFCPDUMP_MODULE *//* * Lets check how many CPUs we have. */static unsigned int __init smp_count_cpus(void){ unsigned int cpu, num_cpus; __u16 boot_cpu_addr; /* * cpu 0 is the boot cpu. See smp_prepare_boot_cpu. */
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -