⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 decode_rs.c

📁 linux 内核源代码
💻 C
字号:
/* * lib/reed_solomon/decode_rs.c * * Overview: *   Generic Reed Solomon encoder / decoder library * * Copyright 2002, Phil Karn, KA9Q * May be used under the terms of the GNU General Public License (GPL) * * Adaption to the kernel by Thomas Gleixner (tglx@linutronix.de) * * $Id: decode_rs.c,v 1.7 2005/11/07 11:14:59 gleixner Exp $ * *//* Generic data width independent code which is included by the * wrappers. */{	int deg_lambda, el, deg_omega;	int i, j, r, k, pad;	int nn = rs->nn;	int nroots = rs->nroots;	int fcr = rs->fcr;	int prim = rs->prim;	int iprim = rs->iprim;	uint16_t *alpha_to = rs->alpha_to;	uint16_t *index_of = rs->index_of;	uint16_t u, q, tmp, num1, num2, den, discr_r, syn_error;	/* Err+Eras Locator poly and syndrome poly The maximum value	 * of nroots is 8. So the necessary stack size will be about	 * 220 bytes max.	 */	uint16_t lambda[nroots + 1], syn[nroots];	uint16_t b[nroots + 1], t[nroots + 1], omega[nroots + 1];	uint16_t root[nroots], reg[nroots + 1], loc[nroots];	int count = 0;	uint16_t msk = (uint16_t) rs->nn;	/* Check length parameter for validity */	pad = nn - nroots - len;	BUG_ON(pad < 0 || pad >= nn);	/* Does the caller provide the syndrome ? */	if (s != NULL)		goto decode;	/* form the syndromes; i.e., evaluate data(x) at roots of	 * g(x) */	for (i = 0; i < nroots; i++)		syn[i] = (((uint16_t) data[0]) ^ invmsk) & msk;	for (j = 1; j < len; j++) {		for (i = 0; i < nroots; i++) {			if (syn[i] == 0) {				syn[i] = (((uint16_t) data[j]) ^					  invmsk) & msk;			} else {				syn[i] = ((((uint16_t) data[j]) ^					   invmsk) & msk) ^					alpha_to[rs_modnn(rs, index_of[syn[i]] +						       (fcr + i) * prim)];			}		}	}	for (j = 0; j < nroots; j++) {		for (i = 0; i < nroots; i++) {			if (syn[i] == 0) {				syn[i] = ((uint16_t) par[j]) & msk;			} else {				syn[i] = (((uint16_t) par[j]) & msk) ^					alpha_to[rs_modnn(rs, index_of[syn[i]] +						       (fcr+i)*prim)];			}		}	}	s = syn;	/* Convert syndromes to index form, checking for nonzero condition */	syn_error = 0;	for (i = 0; i < nroots; i++) {		syn_error |= s[i];		s[i] = index_of[s[i]];	}	if (!syn_error) {		/* if syndrome is zero, data[] is a codeword and there are no		 * errors to correct. So return data[] unmodified		 */		count = 0;		goto finish;	} decode:	memset(&lambda[1], 0, nroots * sizeof(lambda[0]));	lambda[0] = 1;	if (no_eras > 0) {		/* Init lambda to be the erasure locator polynomial */		lambda[1] = alpha_to[rs_modnn(rs,					      prim * (nn - 1 - eras_pos[0]))];		for (i = 1; i < no_eras; i++) {			u = rs_modnn(rs, prim * (nn - 1 - eras_pos[i]));			for (j = i + 1; j > 0; j--) {				tmp = index_of[lambda[j - 1]];				if (tmp != nn) {					lambda[j] ^=						alpha_to[rs_modnn(rs, u + tmp)];				}			}		}	}	for (i = 0; i < nroots + 1; i++)		b[i] = index_of[lambda[i]];	/*	 * Begin Berlekamp-Massey algorithm to determine error+erasure	 * locator polynomial	 */	r = no_eras;	el = no_eras;	while (++r <= nroots) {	/* r is the step number */		/* Compute discrepancy at the r-th step in poly-form */		discr_r = 0;		for (i = 0; i < r; i++) {			if ((lambda[i] != 0) && (s[r - i - 1] != nn)) {				discr_r ^=					alpha_to[rs_modnn(rs,							  index_of[lambda[i]] +							  s[r - i - 1])];			}		}		discr_r = index_of[discr_r];	/* Index form */		if (discr_r == nn) {			/* 2 lines below: B(x) <-- x*B(x) */			memmove (&b[1], b, nroots * sizeof (b[0]));			b[0] = nn;		} else {			/* 7 lines below: T(x) <-- lambda(x)-discr_r*x*b(x) */			t[0] = lambda[0];			for (i = 0; i < nroots; i++) {				if (b[i] != nn) {					t[i + 1] = lambda[i + 1] ^						alpha_to[rs_modnn(rs, discr_r +								  b[i])];				} else					t[i + 1] = lambda[i + 1];			}			if (2 * el <= r + no_eras - 1) {				el = r + no_eras - el;				/*				 * 2 lines below: B(x) <-- inv(discr_r) *				 * lambda(x)				 */				for (i = 0; i <= nroots; i++) {					b[i] = (lambda[i] == 0) ? nn :						rs_modnn(rs, index_of[lambda[i]]							 - discr_r + nn);				}			} else {				/* 2 lines below: B(x) <-- x*B(x) */				memmove(&b[1], b, nroots * sizeof(b[0]));				b[0] = nn;			}			memcpy(lambda, t, (nroots + 1) * sizeof(t[0]));		}	}	/* Convert lambda to index form and compute deg(lambda(x)) */	deg_lambda = 0;	for (i = 0; i < nroots + 1; i++) {		lambda[i] = index_of[lambda[i]];		if (lambda[i] != nn)			deg_lambda = i;	}	/* Find roots of error+erasure locator polynomial by Chien search */	memcpy(&reg[1], &lambda[1], nroots * sizeof(reg[0]));	count = 0;		/* Number of roots of lambda(x) */	for (i = 1, k = iprim - 1; i <= nn; i++, k = rs_modnn(rs, k + iprim)) {		q = 1;		/* lambda[0] is always 0 */		for (j = deg_lambda; j > 0; j--) {			if (reg[j] != nn) {				reg[j] = rs_modnn(rs, reg[j] + j);				q ^= alpha_to[reg[j]];			}		}		if (q != 0)			continue;	/* Not a root */		/* store root (index-form) and error location number */		root[count] = i;		loc[count] = k;		/* If we've already found max possible roots,		 * abort the search to save time		 */		if (++count == deg_lambda)			break;	}	if (deg_lambda != count) {		/*		 * deg(lambda) unequal to number of roots => uncorrectable		 * error detected		 */		count = -EBADMSG;		goto finish;	}	/*	 * Compute err+eras evaluator poly omega(x) = s(x)*lambda(x) (modulo	 * x**nroots). in index form. Also find deg(omega).	 */	deg_omega = deg_lambda - 1;	for (i = 0; i <= deg_omega; i++) {		tmp = 0;		for (j = i; j >= 0; j--) {			if ((s[i - j] != nn) && (lambda[j] != nn))				tmp ^=				    alpha_to[rs_modnn(rs, s[i - j] + lambda[j])];		}		omega[i] = index_of[tmp];	}	/*	 * Compute error values in poly-form. num1 = omega(inv(X(l))), num2 =	 * inv(X(l))**(fcr-1) and den = lambda_pr(inv(X(l))) all in poly-form	 */	for (j = count - 1; j >= 0; j--) {		num1 = 0;		for (i = deg_omega; i >= 0; i--) {			if (omega[i] != nn)				num1 ^= alpha_to[rs_modnn(rs, omega[i] +							i * root[j])];		}		num2 = alpha_to[rs_modnn(rs, root[j] * (fcr - 1) + nn)];		den = 0;		/* lambda[i+1] for i even is the formal derivative		 * lambda_pr of lambda[i] */		for (i = min(deg_lambda, nroots - 1) & ~1; i >= 0; i -= 2) {			if (lambda[i + 1] != nn) {				den ^= alpha_to[rs_modnn(rs, lambda[i + 1] +						       i * root[j])];			}		}		/* Apply error to data */		if (num1 != 0 && loc[j] >= pad) {			uint16_t cor = alpha_to[rs_modnn(rs,index_of[num1] +						       index_of[num2] +						       nn - index_of[den])];			/* Store the error correction pattern, if a			 * correction buffer is available */			if (corr) {				corr[j] = cor;			} else {				/* If a data buffer is given and the				 * error is inside the message,				 * correct it */				if (data && (loc[j] < (nn - nroots)))					data[loc[j] - pad] ^= cor;			}		}	}finish:	if (eras_pos != NULL) {		for (i = 0; i < count; i++)			eras_pos[i] = loc[i] - pad;	}	return count;}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -