📄 imagedenoising_knn_kernel.cu
字号:
/*
* Copyright 1993-2007 NVIDIA Corporation. All rights reserved.
*
* NOTICE TO USER:
*
* This source code is subject to NVIDIA ownership rights under U.S. and
* international Copyright laws. Users and possessors of this source code
* are hereby granted a nonexclusive, royalty-free license to use this code
* in individual and commercial software.
*
* NVIDIA MAKES NO REPRESENTATION ABOUT THE SUITABILITY OF THIS SOURCE
* CODE FOR ANY PURPOSE. IT IS PROVIDED "AS IS" WITHOUT EXPRESS OR
* IMPLIED WARRANTY OF ANY KIND. NVIDIA DISCLAIMS ALL WARRANTIES WITH
* REGARD TO THIS SOURCE CODE, INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY, NONINFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE.
* IN NO EVENT SHALL NVIDIA BE LIABLE FOR ANY SPECIAL, INDIRECT, INCIDENTAL,
* OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS
* OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE
* OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE
* OR PERFORMANCE OF THIS SOURCE CODE.
*
* U.S. Government End Users. This source code is a "commercial item" as
* that term is defined at 48 C.F.R. 2.101 (OCT 1995), consisting of
* "commercial computer software" and "commercial computer software
* documentation" as such terms are used in 48 C.F.R. 12.212 (SEPT 1995)
* and is provided to the U.S. Government only as a commercial end item.
* Consistent with 48 C.F.R.12.212 and 48 C.F.R. 227.7202-1 through
* 227.7202-4 (JUNE 1995), all U.S. Government End Users acquire the
* source code with only those rights set forth herein.
*
* Any use of this source code in individual and commercial software must
* include, in the user documentation and internal comments to the code,
* the above Disclaimer and U.S. Government End Users Notice.
*/
////////////////////////////////////////////////////////////////////////////////
// KNN kernel
////////////////////////////////////////////////////////////////////////////////
__global__ void KNN(
TColor *dst,
int imageW,
int imageH,
float Noise,
float lerpC
){
const int ix = blockDim.x * blockIdx.x + threadIdx.x;
const int iy = blockDim.y * blockIdx.y + threadIdx.y;
//Add half of a texel to always address exact texel centers
const float x = (float)ix + 0.5f;
const float y = (float)iy + 0.5f;
if(ix < imageW && iy < imageH){
//Normalized counter for the weight threshold
float fCount = 0;
//Total sum of pixel weights
float sumWeights = 0;
//Result accumulator
float3 clr = {0, 0, 0};
//Center of the KNN window
float4 clr00 = tex2D(texImage, x, y);
//Cycle through KNN window, surrounding (x, y) texel
for(float i = -KNN_WINDOW_RADIUS; i <= KNN_WINDOW_RADIUS; i++)
for(float j = -KNN_WINDOW_RADIUS; j <= KNN_WINDOW_RADIUS; j++)
{
float4 clrIJ = tex2D(texImage, x + j, y + i);
float distanceIJ = vecLen(clr00, clrIJ);
//Derive final weight from color distance
float weightIJ = expf( - (distanceIJ * Noise + (i * i + j * j) * INV_KNN_WINDOW_AREA) );
//Accumulate (x + j, y + i) texel color with computed weight
clr.x += clrIJ.x * weightIJ;
clr.y += clrIJ.y * weightIJ;
clr.z += clrIJ.z * weightIJ;
//Sum of weights for color normalization to [0..1] range
sumWeights += weightIJ;
//Update weight counter, if KNN weight for current window texel
//exceeds the weight threshold
fCount += (weightIJ > KNN_WEIGHT_THRESHOLD) ? INV_KNN_WINDOW_AREA : 0;
}
//Normalize result color by sum of weights
sumWeights = 1.0f / sumWeights;
clr.x *= sumWeights;
clr.y *= sumWeights;
clr.z *= sumWeights;
//Choose LERP quotent basing on how many texels
//within the KNN window exceeded the weight threshold
float lerpQ = (fCount > KNN_LERP_THRESHOLD) ? lerpC : 1.0f - lerpC;
//Write final result to global memory
clr.x = lerpf(clr.x, clr00.x, lerpQ);
clr.y = lerpf(clr.y, clr00.y, lerpQ);
clr.z = lerpf(clr.z, clr00.z, lerpQ);
dst[imageW * iy + ix] = make_color(clr.x, clr.y, clr.z, 0);
};
}
////////////////////////////////////////////////////////////////////////////////
// Stripped KNN kernel, only highlighting areas with different LERP directions
////////////////////////////////////////////////////////////////////////////////
__global__ void KNNdiag(
TColor *dst,
int imageW,
int imageH,
float Noise,
float lerpC
){
const int ix = blockDim.x * blockIdx.x + threadIdx.x;
const int iy = blockDim.y * blockIdx.y + threadIdx.y;
//Add half of a texel to always address exact texel centers
const float x = (float)ix + 0.5f;
const float y = (float)iy + 0.5f;
if(ix < imageW && iy < imageH){
//Normalized counter for the weight threshold
float fCount = 0;
//Center of the KNN window
float4 clr00 = tex2D(texImage, x, y);
//Cycle through KNN window, surrounding (x, y) texel
for(float i = -KNN_WINDOW_RADIUS; i <= KNN_WINDOW_RADIUS; i++)
for(float j = -KNN_WINDOW_RADIUS; j <= KNN_WINDOW_RADIUS; j++)
{
float4 clrIJ = tex2D(texImage, x + j, y + i);
float distanceIJ = vecLen(clr00, clrIJ);
//Derive final weight from color and geometric distance
float weightIJ = expf( - (distanceIJ * Noise + (i * i + j * j) * INV_KNN_WINDOW_AREA) );
//Update weight counter, if KNN weight for current window texel
//exceeds the weight threshold
fCount += (weightIJ > KNN_WEIGHT_THRESHOLD) ? INV_KNN_WINDOW_AREA : 0.0f;
}
//Choose LERP quotent basing on how many texels
//within the KNN window exceeded the weight threshold
float lerpQ = (fCount > KNN_LERP_THRESHOLD) ? 1.0f : 0;
//Write final result to global memory
dst[imageW * iy + ix] = make_color(lerpQ, 0, (1.0f - lerpQ), 0);
};
}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -