📄 genalg.cpp
字号:
int x[10];
int y[10];
for(int t = 0;t < 10;t++)
{
x[t] = baby1[t];
y[t] = baby2[t];
}
*/
const int NumSelectCities = 10;
//装载被选中的城市编号
int SelectCities[NumSelectCities];
//被选中的城市的位置
int positions[NumSelectCities];
//随机选出城市(并且排序)
for(int i = 0;i < NumSelectCities;i++)
{
//记录所选城市在染色体的位置
int pos = RandInt(0, g_numGen-1);
//记录所选城市编号
SelectCities[i] = mum[pos];
//防止重复选择同一个城市,与及按照在染色体的顺序给城市排序
if(i != 0)
{
for(int j = 0;j < i;j++)
{
//如果所选择城市重复
if(pos == positions[j])
{
i--;
break;
}
//如果序数较小
if(pos < positions[j])
{
for(int k = i;k > j;k--)
{
//调整以前确定的位置
positions[k] = positions[k-1];
//跟着调整所对应的编号
SelectCities[k] = SelectCities[k-1];
}
positions[j] = pos;
//记录所选城市编号
SelectCities[j] = mum[pos];
break;
}
//如果不重复而且序数最大,就摆在最后.
positions[i] = pos;
}
}
else
{
//如果是最先的城市,直接插入.
positions[i] = pos;
}
}
//装载在另外一条染色体里面对应城市排序
int SelectCities2[NumSelectCities];
//记录已经进行排序的城市个数
int count = 0;
//按照母方排序方法给baby2所选的几个城市排序
for(i = 0;i < g_numGen;i++)
{
for(int j = 0;j < NumSelectCities;j++)
{
if(dad[i] == SelectCities[j])
{
//记录对应城市的排序
SelectCities2[count] = dad[i];
//按照母方的排序方法排序
baby2[i] = SelectCities[count];
count++;
break;
}
}
}
//按照父方排序方法给baby1所选的几个城市排序
for(i = 0;i < NumSelectCities;i++)
{
baby1[positions[i]] = SelectCities2[i];
}
/*
for(t = 0;t < 10;t++)
{
x[t] = baby1[t];
y[t] = baby2[t];
}
*/
}
//起到初始化的作用
void CGenAlg::Reset()
{
m_dTotalFitness = 0;
m_dBestFitness = 0;
m_dWorstFitness = 9999999;
m_dAverageFitness = 0;
}
void CGenAlg::CalculateBestWorstAvTot()
{
m_dTotalFitness = 0;
double HighestSoFar = 0;
double LowestSoFar = 9999999;
for (int i=0; i<m_iPopSize; ++i)
{
//update fittest if necessary
if (m_vecPop[i].dFitness > HighestSoFar)
{
HighestSoFar = m_vecPop[i].dFitness;
m_dWorstFitness = HighestSoFar;
}
//update worst if necessary
if (m_vecPop[i].dFitness < LowestSoFar)
{
LowestSoFar = m_vecPop[i].dFitness;
m_iFittestGenome = i;
m_dBestFitness = LowestSoFar;
}
m_dTotalFitness += m_vecPop[i].dFitness;
}//next chromo
m_dAverageFitness = m_dTotalFitness / m_iPopSize;
m_cGeneration++;
m_arAverageFitness[m_cGeneration-1] = m_dAverageFitness;
m_arBestFitness[m_cGeneration-1] = m_dBestFitness;
}
//以等级为基础的缩放比例函数
void CGenAlg::FitnessScaleRank()
{
const int FitnessMultiplier = 1;
//assign fitness according to the genome's position on
//this new fitness 'ladder'
for (int i=0; i<m_iPopSize; i++)
{
m_vecPop[i].dFitness = i * FitnessMultiplier;
}
//recalculate values used in selection
CalculateBestWorstAvTot();
}
//-------------------------GrabNBest----------------------------------
//
// This works like an advanced form of elitism by inserting NumCopies
// copies of the NBest most fittest genomes into a population vector
//--------------------------------------------------------------------
void CGenAlg::GrabNBest(int NBest, vector<CGenome> &vecNewPop)
{
//first we need to sort our genomes
if (!m_ifSorted)
{
sort(m_vecPop.begin(), m_vecPop.end());
m_ifSorted = 1;
}
//now add the required amount of copies of the n most fittest
//to the supplied vector
while(NBest--)
{
vecNewPop.push_back(m_vecPop[(m_iPopSize - 1) - NBest]);
}
}
//此函数产生新的一代,见证着整个进化的全过程.
//以父代种群的基因组容器作为参数传进去,该函数将往该容器里放入新一代的基因组(当然是经过了优胜劣汰的)
void CGenAlg::Epoch(vector<CGenome> &vecNewPop)
{
//用类的成员变量来储存父代的基因组(在此之前m_vecPop储存的是不带估值的所有基因组)
m_vecPop = vecNewPop;
//初始化相关变量
Reset();
m_ifSorted = 0;
vecNewPop.clear();
vecNewPop.reserve(m_iPopSize);
GrabNBest(2,vecNewPop);
CalculateBestWorstAvTot();
//产生新一代的所有基因组
while (vecNewPop.size() < m_iPopSize)
{
//转盘随机抽出两个基因
//CGenome mum = GetChromoRoulette();
//CGenome dad = GetChromoRoulette();
CGenome mum = TournamentSelection(4);
CGenome dad = TournamentSelection(4);
//创建两个子代基因组
vector<int> baby1, baby2;
//交叉父方的基因和母方的基因
CrossoverOBX(mum.Cities, dad.Cities, baby1, baby2);
//使子代基因发生基因突变
MutateIM(baby1);
MutateIM(baby2);
//把两个子代基因组放到新的基因组容器里面
vecNewPop.push_back( CGenome(baby1, 0) );
vecNewPop.push_back( CGenome(baby2, 0) );
}//子代产生完毕
//如果你设置的人口总数非单数的话,就会出现错误
if(vecNewPop.size() != m_iPopSize)
{
AfxMessageBox("你的人口数目不是单数!!!");
return;
}
}
void CGenAlg::outputTheData(CDC* pDC)
{
//显示统计图表
if(ifShowDiagram)
{
CPen pen,pen2,*p_pen;
pen.CreatePen(PS_SOLID,2,RGB(0,0,0));
p_pen = pDC->SelectObject(&pen);
int x1 = g_WindowsWidth / 8;
int y1 = g_WindowsHeight / 2 - g_WindowsHeight / 16;
int x2 = g_WindowsWidth / 8;
int y2 = g_WindowsHeight - g_WindowsHeight / 16;
pDC->MoveTo(x1,y1);
pDC->LineTo(x1,y1 - g_WindowsHeight * 3 / 8);
pDC->MoveTo(x1,y1);
pDC->LineTo(x1 + g_WindowsWidth * 3 / 4,y1);
pDC->MoveTo(x2,y2);
pDC->LineTo(x2,y2 - g_WindowsHeight * 3 / 8);
pDC->MoveTo(x2,y2);
pDC->LineTo(x2 + g_WindowsWidth * 3 / 4,y2);
double max1 = m_arBestFitness[0];
double max2 = m_arAverageFitness[0];
for(int i = 0; i < m_cGeneration;i++)
{
if(max1 < m_arBestFitness[i])
max1 = m_arBestFitness[i];
if(max2 < m_arAverageFitness[i])
max2 = m_arAverageFitness[i];
}
double interval;
if(m_cGeneration == 1)
{
interval = 0;
}
else
{
interval = 1.0 * g_WindowsWidth * 3 / 4 / (m_cGeneration-1);
}
pen2.CreatePen(PS_SOLID,1,RGB(0,0,0));
p_pen = pDC->SelectObject(&pen2);
int showInterval = floor(m_cGeneration/g_NumDiagramline) + 1;
if(m_cGeneration == 690)
{
int a = 10;
}
pDC->MoveTo(x1,y1 - m_arBestFitness[0] / max1 * g_WindowsHeight * 3 / 8);
for(i = 0;i < m_cGeneration;i+=showInterval)
{
int x = x1 + i * interval;
int y = y1 - m_arBestFitness[i] / max1 * g_WindowsHeight * 3 / 8;
pDC->LineTo(x, y);
pDC->LineTo(x, y1);
pDC->MoveTo(x, y);
}
//int interval2 = g_WindowsWidth * 3 / 4 / (m_cGeneration-1);
pDC->MoveTo(x2,y2 - m_arAverageFitness[0] / max2 * g_WindowsHeight * 3 / 8);
for(i = 0;i < m_cGeneration;i+=showInterval)
{
int x = x2 + i * interval;
int y = y2 - m_arAverageFitness[i] / max2 * g_WindowsHeight * 3 / 8;
pDC->LineTo(x, y);
pDC->LineTo(x, y2);
pDC->MoveTo(x, y);
}
}
CFont *pOldfont,*newfont=new CFont;
TEXTMETRIC tm;
newfont->CreateFont(15,0,0,0,FW_NORMAL,0,0,0,GB2312_CHARSET,OUT_DEFAULT_PRECIS,CLIP_DEFAULT_PRECIS,DEFAULT_QUALITY,DEFAULT_PITCH,"宋体");
pOldfont=pDC->SelectObject(newfont);
pDC->GetTextMetrics(&tm);
pDC->SetTextColor(RGB(0,0,0));
pDC->SetBkMode(TRANSPARENT);
char buf[20];
sprintf(buf,"基因的世代: %d", m_cGeneration);
pDC->TextOut(20,20,buf);
sprintf(buf,"最优基因的得分: %Lf", m_dBestFitness);
pDC->TextOut(20,35,buf);
sprintf(buf,"基因的平均得分: %Lf", m_dAverageFitness);
pDC->TextOut(20,50,buf);
pDC->SelectObject(pOldfont);
newfont->DeleteObject();
}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -