📄 read me.txt
字号:
<1>. Copy all the files into your working folder.
<2>. Given T = {Z_train, C_train}, value_lambda and value_gamma(for RBF kernel),
the Matlab function "Build_classifier.m" will give you all the parameters needed for H(z):
[ CA, SV, b ] = Build_classifier( Z_train, C_train, value_lambda, value_gamma ).
(Then, H(z) = sign { [ \sum_{i=1}^{N_SV} CA(i) * K(sv_i, z) ] + b }
.)
All the other files are for the purpose of "Build_classifier.m",
so you don't have to look at them.
=====================================================================================
Explanations about the inputs and outputs in "Build_classifier.m" and how to get H(z):
------------> Please read the comments written in "Build_classifier.m", and
pay special attention to the format of Z_train and C_train.
------------> Read the comments first, then you are ready to look at the example below.
======================================================================================
Example: (D=2)
Z_Train = -1.0 0.0 C_train = -1
0.8 0.5 1
-1.2 -0.1 -1
1.0 0.0 1
-0.9 0.1 -1
-1.3 0.1 -1
value_lambda = 10 value_gamma = 1
Then, after inputting them into "Build_classifier.m", we get CA, SV, b as follows:
CA = -0.1005 SV = -1.2 -0.1 b=0.0304,
-0.6624 -0.9 0.1
-0.3788 -1.3 0.1
0.6024 0.8 0.5
0.5393 1.0 0.0
What we learned from these three outputs is:
There are five support vectors
{sv_1, sv_2, sv_3, sv_4, sv_5},
associated with five original class labels
{c_1, c_2, c_3, c_4, c_5}
and five positive weights
{alpha_1, alpha_2, alpha_3, alpha_4, alpha_5} as follows:
sv_1= [ -1.2 , -0.1 ] , c_1 = sign(CA(1)) = -1
alpha_1 = |CA(1)| = 0.1005
sv_2= [ -0.9 , 0.1 ] , c_2 = sign(CA(2)) = -1
alpha_2 = |CA(2)| = 0.6624
sv_3= [ -1.3 , 0.1 ] , c_3 = sign(CA(3)) = -1
alpha_3 = |CA(3)| = 0.3788
sv_4= [ 0.8 , 0.5 ] , c_4 = sign(CA(4)) = +1
alpha_4 = |CA(4)| = 0.6024
sv_5= [ 1.0 , 0.0 ] , c_5 = sign(CA(5)) = +1
alpha_5 = |CA(5)| = 0.5393
So, the classifier in this case is:
H(z)= sign { [ \sum_{i=1}^{5} c_i * alpha_i * K(sv_i, z) ] + b }
= sign { [ \sum_{i=1}^{5} CA(i) * K(sv_i, z) ] + b }
where
K(sv_i, z) = exp( - value_gamma * ( || sv_i - z ||^2 ) )
= exp( - 1 * ( || sv_i - z ||^2 ) ),
since value_gamma=1.
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -