📄 steep_desc1.m
字号:
% Program: steep_desc1.m
% Title: Steepest-descent algorithm without line search
% Description: Implements the steepest-descent method
% described in Algorithm 5.1. Parameter alpha is determined
% using the closed-form formula in Eq. (5.5) instead of
% a line search.
% Theory: See Practical Optimization Sec. 5.2.4.
% Input:
% fname: objective function
% gname: gradient of the objective function
% hname: Hessian of the objective function
% x0: initial point
% epsi: termination tolerance
% Output:
% xs: solution point
% fs: objective function evaluated at xs.
% k: number of iterations at convergence
% Example:
% Find the minimum of the Himmelblau function
% f = (x1^2 + x2 - 11)^2 + (x1 + x2^2 - 7)^2
% using initial point x0 = [6 6]' and termination tolerance
% epsi = 1e-6.
% Solution:
% Execute the command
% [xs,fs,k] = steep_desc1('f_himm','g_himm','h_himm',[6 6]',1e-6)
% Notes:
% 1. The program can be applied to any customized function
% by defining the function of interest, its gradient, and
% Hessian in m-files.
% ============================================================
function [xs,fs,k] = steep_desc1(fname,gname,hname,x0,epsi)
disp(' ')
disp('Program steep_desc1.m')
k = 1;
xk = x0;
gk = feval(gname,xk);
Hk = feval(hname,xk);
ak = (gk'*gk)/(gk'*Hk*gk);
adk = -ak*gk;
er = norm(adk);
while er >= epsi,
xk = xk + adk;
gk = feval(gname,xk);
Hk = feval(hname,xk);
ak = (gk'*gk)/(gk'*Hk*gk);
adk = -ak*gk;
er = norm(adk);
k = k + 1;
end
format long
disp('Solution point:')
xs = xk + adk
disp('Objective function at the solution point:')
fs = feval(fname,xs)
format short
disp('Number of iterations performed:')
k
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -