📄 viterbi.m
字号:
function [decoder_output,survivor_state,cumulated_metric]=viterbi(G,k,channel_output)%VITERBI The Viterbi decoder for convolutional codes% [decoder_output,survivor_state,cumulated_metric]=viterbi(G,k,channel_output)% G is a n x Lk matrix each row of which% determines the connections from the shift register to the% n-th output of the code, k/n is the rate of the code.% survivor_state is a matrix showing the optimal path through% the trellis. The metric is given in a separate function metric(x,y)% and can be specified to accomodate hard and soft decision.% This algorithm minimizes the metric rather than maximizing% the likelihood. n=size(G,1);% check the sizesif rem(size(G,2),k) ~=0 error('Size of G and k do not agree')endif rem(size(channel_output,2),n)~=0 error('channel output not of the right size')endL=size(G,2)/k;number_of_states=2^((L-1)*k);%==========================================================================% (1) generate state transition matrix, output matrix, and input matrixfor j=0:number_of_states-1 for l=0:2^k-1 [next_state,memory_contents]=nxt_stat(j,l,L,k); input(j+1,next_state+1)=l; branch_output=rem(memory_contents*G',2); nextstate(j+1,l+1)=next_state; output(j+1,l+1)=bin2deci(branch_output); endendstate_metric=zeros(number_of_states,2);depth_of_trellis=length(channel_output)/n;channel_output_matrix=reshape(channel_output,n,depth_of_trellis);survivor_state=zeros(number_of_states,depth_of_trellis+1);%==========================================================================% (2) start decoding of non-tail channel outputsfor i=1:depth_of_trellis-L+1 flag=zeros(1,number_of_states); if i <= L step=2^((L-i)*k); else step=1; end for j=0:step:number_of_states-1 for l=0:2^k-1 branch_metric=0; binary_output=deci2bin(output(j+1,l+1),n); for ll=1:n branch_metric=branch_metric+metric(channel_output_matrix(ll,i),binary_output(ll)); end if((state_metric(nextstate(j+1,l+1)+1,2) > state_metric(j+1,1)... +branch_metric) | flag(nextstate(j+1,l+1)+1)==0) state_metric(nextstate(j+1,l+1)+1,2) = state_metric(j+1,1)+branch_metric; survivor_state(nextstate(j+1,l+1)+1,i+1)=j; flag(nextstate(j+1,l+1)+1)=1; end end end state_metric=state_metric(:,2:-1:1);end%==========================================================================% (3) start decoding of the tail channel-outputsfor i=depth_of_trellis-L+2:depth_of_trellis flag=zeros(1,number_of_states); last_stop=number_of_states/(2^((i-depth_of_trellis+L-2)*k)); for j=0:last_stop-1 branch_metric=0; binary_output=deci2bin(output(j+1,1),n); for ll=1:n branch_metric=branch_metric+metric(channel_output_matrix(ll,i),binary_output(ll)); end if((state_metric(nextstate(j+1,1)+1,2) > state_metric(j+1,1)... +branch_metric) | flag(nextstate(j+1,1)+1)==0) state_metric(nextstate(j+1,1)+1,2) = state_metric(j+1,1)+branch_metric; survivor_state(nextstate(j+1,1)+1,i+1)=j; flag(nextstate(j+1,1)+1)=1; end end state_metric=state_metric(:,2:-1:1);end%==========================================================================% (4) generate the decoder output from the optimal pathstate_sequence=zeros(1,depth_of_trellis+1);state_sequence(1,depth_of_trellis)=survivor_state(1,depth_of_trellis+1);for i=1:depth_of_trellis state_sequence(1,depth_of_trellis-i+1)=survivor_state((state_sequence(1,depth_of_trellis+2-i)... +1),depth_of_trellis-i+2);enddecodeder_output_matrix=zeros(k,depth_of_trellis-L+1);for i=1:depth_of_trellis-L+1 dec_output_deci=input(state_sequence(1,i)+1,state_sequence(1,i+1)+1); dec_output_bin=deci2bin(dec_output_deci,k); decoder_output_matrix(:,i)=dec_output_bin(k:-1:1)';enddecoder_output=reshape(decoder_output_matrix,1,k*(depth_of_trellis-L+1));cumulated_metric=state_metric(1,1);
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -