📄 neuralnet.cs
字号:
using System;
using System.Collections.Generic;
using System.Text;
namespace ValidationCode
{
public class NeuralNet
{
//相关系数
const double momentum = 0;
//最小均方误差
const double minex = 0.001;
//BP网络隐层结点的数目
const int hidden = 10;
//训练步长
const double eta = 0.015;
//网络输出层结点的个数
const int output = 4;
//输入层结点个数,,待识别图片的像素点个数
const int input = 156;
//理想输出模板
static double[] output0 = { 0.1, 0.1, 0.1, 0.1 };
static double[] output1 = { 0.1, 0.1, 0.1, 0.9 };
static double[] output2 = { 0.1, 0.1, 0.9, 0.1 };
static double[] output3 = { 0.1, 0.1, 0.9, 0.9 };
static double[] output4 = { 0.1, 0.9, 0.1, 0.1 };
static double[] output5 = { 0.1, 0.9, 0.1, 0.9 };
static double[] output6 = { 0.1, 0.9, 0.9, 0.1 };
static double[] output7 = { 0.1, 0.9, 0.9, 0.9 };
static double[] output8 = { 0.9, 0.1, 0.1, 0.1 };
static double[] output9 = { 0.9, 0.1, 0.1, 0.9 };
static double[][] outnumber = { output0, output1, output2, output3, output4, output5, output6, output7, output8, output9 };
//指向输入层于隐层之间权值的指针
static double[][] input_weights;
//指向隐层与输出层之间的权值的指针
static double[][] hidden_weights;
//指向上一此输入层于隐层之间权值的指针
static double[][] input_prev_weights;
//指向上一此隐层与输出层之间的权值的指针
static double[][] hidden_prev_weights;
static NeuralNet()
{
ran = new Random();
input_weights = new double[input + 1][];
hidden_weights = new double[hidden + 1][];
input_prev_weights = new double[input + 1][];
hidden_prev_weights = new double[hidden + 1][];
//对各种权值进行初始化
randomize_weights(input_weights, input, hidden);
randomize_weights(hidden_weights, hidden, output);
zero_weights(input_prev_weights, input, hidden);
zero_weights(hidden_prev_weights, hidden, output);
}
static double squash(double x)
{
return (1.0 / (1.0 + Math.Exp(-x)));
}
//生成-1~1的随机数
static Random ran;
static double getrandom()
{
double a = ran.NextDouble();
double b = ran.NextDouble();
return a - b;
}
/// <summary>
/// 随机初始化权值
/// </summary>
/// <param name="w"></param>
/// <param name="m"></param>
/// <param name="n"></param>
static void randomize_weights(double[][] w, int m, int n)
{
for (int i = 0; i <= m; i++)
{
double[] temp = new double[n + 1];
for (int j = 0; j <= n; j++)
temp[j] = getrandom();
w[i] = temp;
}
}
/// <summary>
/// 0初始化权值
/// </summary>
/// <param name="?"></param>
/// <param name="m"></param>
/// <param name="n"></param>
static void zero_weights(double[][] w, int m, int n)
{
for (int i = 0; i <= m; i++)
{
double[] temp = new double[n + 1];
for (int j = 0; j <= n; j++)
temp[j] = 0.0;
w[i] = temp;
}
}
/// <summary>
/// 前向传输
/// </summary>
/// <param name="l1"></param>
/// <param name="l2"></param>
/// <param name="conn"></param>
/// <param name="n1"></param>
/// <param name="n2"></param>
static void LayerForward(double[] curr, double[] next, double[][] weights, int n1, int n2)
{
double sum;
/*** 设置偏置对应输入层值 ***/
curr[0] = 1.0;
/*** 对于第二层的每个神经元 ***/
for (int j = 1; j <= n2; j++)
{
/*** 计算输入的加权总和 ***/
sum = 0.0;
for (int k = 0; k <= n1; k++)
sum += weights[k][j] * curr[k];
next[j] = squash(sum);
}
}
/// <summary>
/// 输出误差
/// </summary>
/// <param name="delta"></param>
/// <param name="target"></param>
/// <param name="output"></param>
/// <param name="nj"></param>
static void OutputError(double[] delta, double[] target, double[] output, int nj)
{
double o, t;
for (int j = 1; j <= nj; j++)
{
o = output[j];
t = target[j];
delta[j] = o * (1.0 - o) * (t - o);
}
}
/// <summary>
/// 隐含层误差
/// </summary>
/// <param name="delta_h"></param>
/// <param name="nh"></param>
/// <param name="delta_o"></param>
/// <param name="no"></param>
/// <param name="who"></param>
/// <param name="hidden"></param>
static void HiddenError(double[] delta_h, int nh, double[] delta_o, int no, double[][] weights, double[] hidden)
{
double h, sum;
for (int j = 1; j <= nh; j++)
{
h = hidden[j];
sum = 0.0;
for (int k = 1; k <= no; k++)
sum += delta_o[k] * weights[j][k];
delta_h[j] = h * (1.0 - h) * sum;
}
}
/* 调整权值 */
static void AdjustWeights(double[] delta, int ndelta, double[] ly, int nly, double[][] w, double[][] oldw, double eta, double momentum)
{
double new_dw;
ly[0] = 1.0;
for (int j = 1; j <= ndelta; j++)
{
for (int k = 0; k <= nly; k++)
{
new_dw = ((eta * delta[j] * ly[k]) + (momentum * oldw[k][j]));
w[k][j] += new_dw;
oldw[k][j] = new_dw;
}
}
}
/// <summary>
/// 根据输入的特征向量和期望的理想输出向量对BP网络尽行训练,训练结束后将权值保存
/// </summary>
/// <param name="data_in">输入的特征向量</param>
/// <param name="data_out">理想输出特征向量</param>
public static bool Train(List<List<double>> data_in, List<int> data_out)
{
//循环变量
int i, l, k, flag;
//指向输入层数据的指针
double[] input_layer = new double[input + 1];
//指向隐层数据的指针
double[] hidden_layer = new double[input + 1];
//指向输出层数据的指针
double[] output_layer = new double[hidden + 1];
//指向隐层误差数据的指针
double[] hidden_deltas = new double[hidden + 1];
//指向输出层误差数剧的指针
double[] output_deltas = new double[output + 1];
//指向理想目标输出的指针
double[] target = new double[output + 1];
//每次循环后的均方误差误差值
double ex = double.MaxValue;
//开始进行BP网络训练
//这里设定最大的迭代次数为15000次
for (l = 0; l < 15000; l++)
{
//对均方误差置零
ex = 0;
for (k = 0; k < data_in.Count; k++)
{
//将提取的样本的特征向量输送到输入层上
for (i = 1; i <= input; i++)
input_layer[i] = data_in[k][i - 1];
flag = data_out[k];
//将预定的理想输出输送到BP网络的理想输出单元
for (i = 1; i <= output; i++)
target[i] = outnumber[flag][i - 1];
//前向传输激活
//将数据由输入层传到隐层
LayerForward(input_layer, hidden_layer, input_weights, input, hidden);
//将隐层的输出传到输出层
LayerForward(hidden_layer, output_layer, hidden_weights, hidden, output);
//误差计算
//将输出层的输出与理想输出比较计算输出层每个结点上的误差
OutputError(output_deltas, target, output_layer, output);
//根据输出层结点上的误差计算隐层每个节点上的误差
HiddenError(hidden_deltas, hidden, output_deltas, output, hidden_weights, hidden_layer);
//权值调整
//根据输出层每个节点上的误差来调整隐层与输出层之间的权值
AdjustWeights(output_deltas, output, hidden_layer, hidden, hidden_weights, hidden_prev_weights, eta, momentum);
//根据隐层每个节点上的误差来调整隐层与输入层之间的权值
AdjustWeights(hidden_deltas, hidden, input_layer, input, input_weights, input_prev_weights, eta, momentum);
//误差统计
for (i = 1; i <= output; i++)
ex = (output_layer[i] - outnumber[flag][i - 1]) * (output_layer[i] - outnumber[flag][i - 1]);
}
ex = ex / Convert.ToDouble(data_in.Count*output);
if (ex < minex) break;
}
if (ex <= minex)
return true;
else
return false;
}
///<summary>
///读入输入样本的特征相量并根据训练所得的权值,进行识别
///</summary>
///<param name="data_in"></param>
public static int Recognize(List<double> data_in)
{
int i, result;
result = 0;
//指向输入层数据的指针
double[] input_layer = new double[input + 1];
//指向隐层数据的指针
double[] hidden_layer = new double[input + 1];
//指向输出层数据的指针
double[] output_layer = new double[hidden + 1];
//将提取的样本的特征向量输送到输入层上
for (i = 1; i <= input; i++)
input_layer[i] = data_in[i - 1];
//前向输入激活
LayerForward(input_layer, hidden_layer, input_weights, input, hidden);
LayerForward(hidden_layer, output_layer, hidden_weights, hidden, output);
//考察每一位的输出
//如果大于0.5判为1
for (i = 1; i <= output; i++)
{
if (output_layer[i] > 0.5)
result += (int)Math.Pow(2, Convert.ToDouble(4 - i));
}
return result;
}
}
}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -