⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 fat16.c

📁 MMC/SD操作
💻 C
📖 第 1 页 / 共 4 页
字号:
int16_t fat16_read_file(struct fat16_file_struct* fd, uint8_t* buffer, uint16_t buffer_len){    /* check arguments */    if(!fd || !buffer || buffer_len < 1)        return -1;    /* determine number of bytes to read */    if(fd->pos + buffer_len > fd->dir_entry.file_size)        buffer_len = fd->dir_entry.file_size - fd->pos;    if(buffer_len == 0)        return 0;        uint16_t cluster_size = fd->fs->header.cluster_size;    uint16_t cluster_num = fd->dir_entry.cluster;    uint16_t buffer_left = buffer_len;    uint16_t first_cluster_offset;    /* find cluster in which to start reading */    if(cluster_num)    {        uint32_t pos = fd->pos;        while(pos >= cluster_size)        {            pos -= cluster_size;            cluster_num = fat16_get_next_cluster(fd->fs, cluster_num);            if(!cluster_num)                return -1;        }        first_cluster_offset = pos;    }    else    {        return -1;    }        /* read data */    while(1)    {        /* calculate data size to copy from cluster */        uint32_t cluster_offset = fd->fs->header.cluster_zero_offset +                                  (uint32_t) (cluster_num - 2) * cluster_size + first_cluster_offset;        uint16_t copy_length = cluster_size - first_cluster_offset;        if(copy_length > buffer_left)            copy_length = buffer_left;        /* read data */        if(!fd->fs->partition->device_read(cluster_offset, buffer, copy_length))            return buffer_len - buffer_left;        /* calculate new file position */        buffer += copy_length;        buffer_left -= copy_length;        fd->pos += copy_length;        /* check if we are done */        if(buffer_left == 0)            break;                /* we are on a cluster boundary, so get the next cluster */        if((cluster_num = fat16_get_next_cluster(fd->fs, cluster_num)))            first_cluster_offset = 0;        else            return buffer_len - buffer_left;    }    return buffer_len;}/** * \ingroup fat16_file * Writes data to a file. *  * The data is written to the current file location. * * \param[in] fd The file handle of the file to which to write. * \param[in] buffer The buffer from which to read the data to be written. * \param[in] buffer_len The amount of data to write. * \returns The number of bytes written, 0 on disk full, or -1 on failure. * \see fat16_read_file */int16_t fat16_write_file(struct fat16_file_struct* fd, const uint8_t* buffer, uint16_t buffer_len){#if FAT16_WRITE_SUPPORT    /* check arguments */    if(!fd || !buffer || buffer_len < 1)        return -1;    if(fd->pos > fd->dir_entry.file_size)        return -1;    uint16_t cluster_size = fd->fs->header.cluster_size;    uint16_t cluster_num = fd->dir_entry.cluster;    uint16_t buffer_left = buffer_len;    uint16_t first_cluster_offset = 0;    /* find cluster in which to start writing */    if(cluster_num)    {        uint32_t pos = fd->pos;        while(pos >= cluster_size)        {            pos -= cluster_size;            cluster_num = fat16_get_next_cluster(fd->fs, cluster_num);            if(!cluster_num && pos == 0)                /* the file exactly ends on a cluster boundary, and we append to it */                cluster_num = fat16_append_cluster(fd->fs, cluster_num);            if(!cluster_num)                return -1;        }        first_cluster_offset = pos;    }    else    {        fd->dir_entry.cluster = cluster_num = fat16_append_cluster(fd->fs, 0);        if(!cluster_num)            return -1;    }        /* write data */    while(1)    {        /* calculate data size to write to cluster */        uint32_t cluster_offset = fd->fs->header.cluster_zero_offset +                                  (uint32_t) (cluster_num - 2) * cluster_size + first_cluster_offset;        uint16_t write_length = cluster_size - first_cluster_offset;        if(write_length > buffer_left)            write_length = buffer_left;        /* write data which fits into the current cluster */        if(!fd->fs->partition->device_write(cluster_offset, buffer, write_length))            break;        /* calculate new file position */        buffer += write_length;        buffer_left -= write_length;        fd->pos += write_length;        /* check if we are done */        if(buffer_left == 0)            break;                /* we are on a cluster boundary, so get the next cluster */        uint16_t cluster_num_next = fat16_get_next_cluster(fd->fs, cluster_num);        if(!cluster_num_next)        {            cluster_num_next = fat16_append_cluster(fd->fs, cluster_num);            if(!cluster_num_next)                break;        }        cluster_num = cluster_num_next;                first_cluster_offset = 0;    }    /* update directory entry */    if(fd->pos > fd->dir_entry.file_size)    {        uint32_t size_old = fd->dir_entry.file_size;        /* update file size */        fd->dir_entry.file_size = fd->pos;        /* write directory entry */        if(!fat16_write_dir_entry(fd->fs, &fd->dir_entry))        {            /* We do not return an error here since we actually wrote             * some data to disk. So we calculate the amount of data             * we wrote to disk and which lies within the old file size.             */            buffer_left = fd->pos - size_old;            fd->pos = size_old;        }    }    return buffer_len - buffer_left;#else    return -1;#endif}/** * \ingroup fat16_file * Repositions the read/write file offset. * * Changes the file offset where the next call to fat16_read_file() * or fat16_write_file() starts reading/writing. * * If the new offset is beyond the end of the file, fat16_resize_file() * is implicitly called, i.e. the file is expanded. * * The new offset can be given in different ways determined by * the \c whence parameter: * - \b FAT16_SEEK_SET: \c *offset is relative to the beginning of the file. * - \b FAT16_SEEK_CUR: \c *offset is relative to the current file position. * - \b FAT16_SEEK_END: \c *offset is relative to the end of the file. * * The resulting absolute offset is written to the location the \c offset * parameter points to. *  * \param[in] fd The file decriptor of the file on which to seek. * \param[in,out] offset A pointer to the new offset, as affected by the \c whence *                   parameter. The function writes the new absolute offset *                   to this location before it returns. * \param[in] whence Affects the way \c offset is interpreted, see above. * \returns 0 on failure, 1 on success. */uint8_t fat16_seek_file(struct fat16_file_struct* fd, int32_t* offset, uint8_t whence){    if(!fd || !offset)        return 0;    uint32_t new_pos = fd->pos;    switch(whence)    {        case FAT16_SEEK_SET:            new_pos = *offset;            break;        case FAT16_SEEK_CUR:            new_pos += *offset;            break;        case FAT16_SEEK_END:            new_pos = fd->dir_entry.file_size + *offset;            break;        default:            return 0;    }    if(new_pos > fd->dir_entry.file_size && !fat16_resize_file(fd, new_pos))        return 0;    fd->pos = new_pos;    *offset = new_pos;    return 1;}/** * \ingroup fat16_file * Resizes a file to have a specific size. * * Enlarges or shrinks the file pointed to by the file descriptor to have * exactly the specified size. * * If the file is truncated, all bytes having an equal or larger offset * than the given size are lost. If the file is expanded, the additional * bytes are allocated, but they keep their values. * * \param[in] fd The file decriptor of the file which to resize. * \param[in] size The new size of the file. * \returns 0 on failure, 1 on success. */uint8_t fat16_resize_file(struct fat16_file_struct* fd, uint32_t size){    if(!fd)        return 0;    uint16_t cluster_num = fd->dir_entry.cluster;    uint16_t cluster_size = fd->fs->header.cluster_size;    uint32_t size_new = size;    if(fd->dir_entry.file_size < size)    {        /* check if the file owns a cluster */        if(cluster_num == 0)        {            /* allocate first cluster */            if(!(cluster_num = fat16_append_cluster(fd->fs, cluster_num)))                return 0;            fd->dir_entry.cluster = cluster_num;        }        else        {            /* get last cluster of file */            uint16_t cluster_num_next;            while((cluster_num_next = fat16_get_next_cluster(fd->fs, cluster_num)))            {                cluster_num = cluster_num_next;                size_new -= cluster_size;            }        }        /* append new clusters as needed */        if(size_new > cluster_size)        {            while(1)            {                if(!(cluster_num = fat16_append_cluster(fd->fs, cluster_num)))                    return 0;                if(size_new <= cluster_size)                    break;                size_new -= cluster_size;            }        }        /* write new directory entry */        fd->dir_entry.file_size = size;        if(!fat16_write_dir_entry(fd->fs, &fd->dir_entry))            return 0;    }    else if(fd->dir_entry.file_size > size)    {        /* write new directory entry */        fd->dir_entry.file_size = size;        if(size == 0)            fd->dir_entry.cluster = 0;        if(!fat16_write_dir_entry(fd->fs, &fd->dir_entry))            return 0;                /* get cluster where the file is cut off */        while(size_new > cluster_size)        {            if(!(cluster_num = fat16_get_next_cluster(fd->fs, cluster_num)))                return 0;            size_new -= cluster_size;        }        /* free all clusters no longer needed */        if(size == 0 || (cluster_num = fat16_get_next_cluster(fd->fs, cluster_num)))        {             while(cluster_num)            {                /* get next cluster before freeing the previous one */                uint16_t cluster_num_next = fat16_get_next_cluster(fd->fs, cluster_num);                                /* delete cluster */                fat16_free_cluster(fd->fs, cluster_num);                cluster_num = cluster_num_next;            }        }    }        return 1;}/** * \ingroup fat16_dir * Opens a directory. * * \param[in] fs The filesystem on which the directory to open resides. * \param[in] dir_entry The directory entry which stands for the directory to open. * \returns An opaque directory descriptor on success, 0 on failure. * \see fat16_close_dir */struct fat16_dir_struct* fat16_open_dir(struct fat16_fs_struct* fs, const struct fat16_dir_entry_struct* dir_entry){    if(!fs || !dir_entry || !(dir_entry->attributes & FAT16_ATTRIB_DIR))        return 0;    struct fat16_dir_struct* dd = malloc(sizeof(*dd));    if(!dd)        return 0;        memcpy(&dd->dir_entry, dir_entry, sizeof(*dir_entry));    dd->fs = fs;    dd->entry_next = 0;    return dd;}/** * \ingroup fat16_dir * Closes a directory descriptor. * * This function destroys a directory descriptor which was * previously obtained by calling fat16_open_dir(). When this * function returns, the given descriptor will be invalid. * * \param[in] dd The directory descriptor to close. * \see fat16_open_dir */void fat16_close_dir(struct fat16_dir_struct* dd){    if(dd)        free(dd);}/** * \ingroup fat16_dir * Reads the next directory entry contained within a parent directory. * * \param[in] dd The descriptor of the parent directory from which to read the entry. * \param[out] dir_entry Pointer to a buffer into which to write the directory entry information. * \returns 0 on failure, 1 on success. * \see fat16_reset_dir */uint8_t fat16_read_dir(struct fat16_dir_struct* dd, struct fat16_dir_entry_struct* dir_entry){    if(!dd || !dir_entry)        return 0;    if(dd->dir_entry.cluster == 0)    {        /* read entry from root directory */        if(fat16_read_root_dir_entry(dd->fs, dd->entry_next, dir_entry))        {            ++dd->entry_next;            return 1;

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -