📄 nbest-optimize.1
字号:
--nnoo--rreeoorrddeerr Do not reorder the hypotheses for alignment, and start the alignment with the reference words. The default is to first align hypotheses by order of decreasing scores (according to the initial score weighting) and then the reference, which is more compatible with how nnbbeesstt--llaattttiiccee(1) operates. --nnooiissee _n_o_i_s_e_-_t_a_g Designate _n_o_i_s_e_-_t_a_g as a vocabulary item that is to be ignored in aligning hypotheses with each other (the same as the -pau- word). This is typically used to identify a noise marker. --nnooiissee--vvooccaabb _f_i_l_e Read several noise tags from _f_i_l_e, instead of, or in addition to, the single noise tag specified by --nnooiissee. --hhiiddddeenn--vvooccaabb file Read a subvocabulary from _f_i_l_e and constrain word alignments to only group those words that are either all in or outside the subvocabulary. This may be used to keep ``hidden event'' tags from aligning with regular words. --iinniitt--llaammbbddaass _'_w_1 _w_2 _._._._' Initialize the score weights to the values specified (zeros are filled in for missing values). The default is to set the initial acoustic model weight to 1, the language model weight from --rreessccoorree--llmmww, the word transition weight from --rreessccoorree--wwttww, and all remaining weights to zero initially. Prefixing a value with an equal sign (`=') holds the value constant during optimization. (All values should be enclosed in quotes to form a single command-line argument.) Hypotheses are aligned using the initial weights; thus, it makes sense to reoptimize with initial weights from a previous optimization in order to obtain alignments closer to the optimimum. --aallpphhaa _a Controls the error function smoothness; the sigmoid slope parameter is set to _a. --eeppssiilloonn _e The step-size used in gradient descent (the multi- ple of the gradient vector). --mmiinn--lloossss _x Sets the loss function for a sample effectively to zero when its value falls below _x. --mmaaxx--ddeellttaa _d Ignores the contribution of a sample to the gradi- ent if the derivative exceeds _d. This helps avoid numerical problems. --mmaaxxiitteerrss _m Stops optimization after _m iterations. In Amoeba search, this limits the total number of points in the parameter space that are evaluated. --mmaaxx--bbaadd--iitteerrss n Stops optimization after _n iterations during which the actual (non-smoothed) error has not decreased. --mmaaxx--aammooeebbaa--rreessttaarrttss r Perform only up to _r repeated Amoeba searches. The default is to search until _D searches give the same results, where _D is the dimensionality of the prob- lem. --mmaaxx--ttiimmee _T Abort search if new lower-error point isn't found in _T seconds. --eeppssiilloonn--sstteeppddoowwnn _s --mmiinn--eeppssiilloonn _m If _s is a value greater than zero, the learning rate will be multiplied by _s every time the error does not decrease after a number of iterations specified by --mmaaxx--bbaadd--iitteerrss. Training stops when the learning rate falls below _m in this manner. --ccoonnvveerrggee _x Stops optimization when the (smoothed) loss func- tion changes relatively by less than _x from one iteration to the next. --qquuiicckkpprroopp Use the approximate second-order method known as "QuickProp" (Fahlman 1989). --iinniitt--aammooeebbaa--ssiimmpplleexx _'_s_1 _s_2 _._._._' Defines the step size for the initial Amoeba sim- plex. One value for each non-fixed search dimen- sion should be specified, plus optionally a value for the posterior scaling parameter (which is searched as an added dimension). --pprriinntt--hhyyppss _f_i_l_e Write the best word hypotheses to _f_i_l_e after opti- mization. --wwrriittee--rroovveerr--ccoonnttrrooll _f_i_l_e Writes a control file for nnbbeesstt--rroovveerr to _f_i_l_e, reflecting the names of the input directories and the optimized parameter values. The format of _f_i_l_e is described in nnbbeesstt--ssccrriippttss(1). The file is rewritten for each new minimal error weight combi- nation found. ---- Signals the end of options, such that following command-line arguments are interpreted as addi- tional scorefiles even if they start with `-'. _s_c_o_r_e_d_i_r... Any additional arguments name directories contain- ing further score files. In each directory, there must exist one file named after the sentence ID it corresponds to (the file may also end in ``.gz'' and contain compressed data). The total number of score dimensions is thus 3 (for the standard scores from the N-best list) plus the number of additional score directories specified.SSEEEE AALLSSOO nbest-lattice(1), nbest-scripts(1), nbest-format(5). S. Katagiri, C.H. Lee, & B.-H. Juang, "A Generalized Prob- abilistic Descent Method", in _P_r_o_c_e_e_d_i_n_g_s _o_f _t_h_e _A_c_o_u_s_t_i_- _c_a_l _S_o_c_i_e_t_y _o_f _J_a_p_a_n_, _F_a_l_l _M_e_e_t_i_n_g, pp. 141-142, 1990. S. E. Fahlman, "Faster-Learning Variations on Back-Propa- gation: An Empirical Study", in D. Touretzky, G. Hinton, & T. Sejnowski (eds.), _P_r_o_c_e_e_d_i_n_g_s _o_f _t_h_e _1_9_8_8 _C_o_n_n_e_c_t_i_o_n_i_s_t _M_o_d_e_l_s _S_u_m_m_e_r _S_c_h_o_o_l, pp. 38-51, Morgan Kaufmann, 1989. W. H. Press, B. P. Flannery, S. A. Teukolsky, & W. T. Vet- terling, _N_u_m_e_r_i_c_a_l _R_e_c_i_p_e_s _i_n _C_: _T_h_e _A_r_t _o_f _S_c_i_e_n_t_i_f_i_c _C_o_m_p_u_t_i_n_g, Cambridge University Press, 1988.BBUUGGSS Gradient-based optimization is not supported (yet) in 1-best mode or in conjunction with the --ccoommbbiinnee--lliinneeaarr or --nnoonn--nneeggaattiivvee options; use simplex-search optimization instead. The N-best directory in the control file output by --wwrriittee-- rroovveerr--ccoonnttrrooll is inferred from the first N-best filename specified with --nnbbeesstt--ffiilleess, and will therefore only work if all N-best lists are placed in the same directory. The --iinnsseerrttiioonn--wweeiigghhtt and --wwoorrdd--wweeiigghhttss options only affect the word error computation, not the construction of hypothesis alignments. Also, they only apply to sausage- based, not 1-best error optimization. (1-best errors may be explicitly specified using the --eerrrroorrss option).AAUUTTHHOORRSS Andreas Stolcke <stolcke@speech.sri.com> Dimitra Vergyri <dverg@speech.sri.com> Copyright 2000-2006 SRI InternationalSRILM Tools $Date: 2006/11/20 20:39:15 $ nbest-optimize(1)
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -