📄 gfconv.c
字号:
/*=============================================================================
* Syntax: c = gfconv(a, b, p)
* GFCONV GF(P) polynomial convolution or GF(P^M) element multiplication.
* C = GFCONV(A, B) computes the convolution between two GF(2)
* polynomials A and B. The polynomial degree of the resulted GF(2)
* polynomial C equals degree(A) + degree(B).
*
* C = GFADD(A, B, P) computes the convolution between two GF(P)
* polynomials when P is a scalar prime number.
* When P is a matrix that contains the tuple of all elements in GF(Q^M),
* this function takes A and B as indices (power number of the
* exponential form) of GF(Q^M) elements. The output C is
* alpha^C = alpha^A * alpha^B in GF(Q^M). The computation is
* element-by-element computation. You can generate the tuple of all
* elements in GF(Q^M) by P = GFTUPLE([-1:Q^M-2]', M, Q).
*
* In polynomial computation, A, B, and C are ascending ordered, i.e.,
* A = [a_0, a_1, a_2,..., a_(n-1), a_n] represents
* A(X) = a_0 + a_1 X + a_2 X^2 +...+ a_(n-1) X^(n-1) + a_n X^n
* a_i must be a element in GF(P).
*
* In power representation form, [-Inf, 0, 1, 2, ...] represents
* [0, 1, alpha, alpha^2, ...] in GF(p^m).
*
* See also GFADD, GFDIV, GFTUPLE
*
*=============================================================================
* Original designed by Wes Wang,
* Jun Wu, The Mathworks, Inc.
* Dec-12, 1995
*
* Copyright (c) 1995-96 by The MAthWorks, Inc.
* All Rights Reserved
* $Revision: 1.1 $ $Date: 1996/04/01 18:14:08 $
*===========================================================================
*/
#include <math.h>
#include "mex.h"
#include "gflib.c"
void mexFunction(int nlhs, Matrix *plhs[], int nrhs, Matrix *prhs[])
{
int ma, na, mb, nb, nc, np, mp, len_a, len_b, len_p, i;
int *paa, *pbb, *pp, *pcc, *Iwork1, *Iwork2;
double *pa, *pb, *p, *pc;
if ( nrhs < 2 ){
mexErrMsgTxt("Not enough input for GFCONV!");
}else if ( nrhs == 2 ){
len_p = 1;
}else if ( nrhs > 2 ){
p = mxGetPr(prhs[2]);
np= mxGetM(prhs[2]);
mp= mxGetN(prhs[2]);
len_p = np*mp;
}
/* get input arguments */
pa = mxGetPr(prhs[0]);
pb = mxGetPr(prhs[1]);
ma = mxGetM(prhs[0]);
na = mxGetN(prhs[0]);
mb = mxGetM(prhs[1]);
nb = mxGetN(prhs[1]);
len_a = ma*na;
len_b = mb*nb;
/* variable type conversion for calling functions in gflib.c */
paa = (int *)mxCalloc(len_a, sizeof(int));
pbb = (int *)mxCalloc(len_b, sizeof(int));
pp = (int *)mxCalloc(len_p, sizeof(int));
for (i=0; i < len_a; i++)
paa[i] = (int) pa[i];
for (i=0; i < len_b; i++)
pbb[i] = (int) pb[i];
if( nrhs == 2 ){
pp[0] = 2;
}else{
for (i=0; i < len_p; i++)
pp[i] = (int) p[i];
}
/* truncate input */
Iwork1 = (int *)mxCalloc(len_a+len_b, sizeof(int));
gftrunc(paa,&len_a,len_p,Iwork1);
gftrunc(pbb,&len_b,len_p,Iwork1+len_a);
/* computation */
if (len_p <= 1){ /* case of polynomial calculation */
/* input check up */
for (i=0; i < len_a; i++){
if (pa[i] < 0 || pa[i] != floor(pa[i]) || pa[i] >= pp[0] )
mexErrMsgTxt("The polynomial coeficients must be in GF(P)");
}
for (i=0; i < len_b; i++){
if (pb[i] < 0 || pb[i] != floor(pb[i]) || pb[i] >= pp[0])
mexErrMsgTxt("The polynomial coeficients must be in GF(P)");
}
/* call gfconv() in gflib.c */
nc = len_a+len_b-1;
pcc = (int *)mxCalloc(nc, sizeof(int));
Iwork2 = (int *)mxCalloc(6*nc+2, sizeof(int));
gfconv(paa, len_a, pbb, len_b, *pp, pcc, Iwork2);
} else { /* computation in GF(p^m) field */
/* call gfpconv() in gflib.c */
nc = len_a+len_b+1;
pcc = (int *)mxCalloc(nc, sizeof(int));
Iwork2 = (int *)mxCalloc(5+3*(np+mp), sizeof(int));
gfpconv(paa, len_a, pbb, len_b, pp, np, mp, pcc, Iwork2);
}
pc = mxGetPr(plhs[0]=mxCreateFull(1, nc, 0));
for(i=0; i < nc; i++){
if(pcc[i] < 0){
pc[i] = -mexGetInf();
}else{
pc[i] = (double)pcc[i];
}
}
return;
}
/*--end of GFCONV.C--*/
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -