📄 ga.cpp
字号:
//console application
/*这里是对应求解y=x*sin(1/x)在[0.05,0.5]中的极小值(这里确切说是局部最小值)
设实数编码,基因长度为3,上下限为[0.15,0],这样评估函数就设为0.5-((三个基因的和+0.05)sin(1/(三个基因的和+0.05))),
评估函数的值阈[0,1],其最大值就是最好的适应度
*/
#include "stdafx.h"
#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#define POPSIZE 15 /* 种群大小 */
#define MAXGENS 1000 /* 最大代数 */
#define NVARS 3 /* 编码的长度*/
#define PXOVER 0.8 /* 交叉概率 */
#define PMUTATION 0.01 /* 变异概率 */
#define TRUE 1
#define FALSE 0
int generation; /* 当前代数 */
int cur_best; /* 当前最佳个体 */
FILE *galog; /* 输出文件 */
struct genotype /* 代表一个个体的结构体 */
{
double gene[NVARS]; /* 编码 */
double fitness; /* 适应度 */
double upper[NVARS]; /* 编码上限 */
double lower[NVARS]; /* 编码下限 */
double rfitness; /* 此个体相对种群的适应度 */
double cfitness; /* 种群中个体适应度累计 */
};
//下面+1的目的是为了存储最优值keep_the_best()
struct genotype population[POPSIZE+1]; /* population */
struct genotype newpopulation[POPSIZE+1]; /* 下一代 */
/* 函数声明 */
void initialize(void);
double randval(double, double);
void evaluate(void);
void keep_the_best(void);
void elitist(void);
void select(void);
void crossover(void);
void Xover(int,int);
void swap(double *, double *);
void mutate(void);
void report(void);
/***********************************************************/
/* 初始化函数 */
/***********************************************************/
void initialize(void)
{
FILE *infile;
int i, j;
double lbound, ubound;
if ((infile = fopen("inputdata.txt","r"))==NULL)
{
fprintf(galog,"\nCannot open input file!\n");
exit(1);
}
for (i = 0; i < NVARS; i++) //每维编码都有上下限
{
fscanf(infile, "%lf",&lbound); //好象是实数编码啊
fscanf(infile, "%lf",&ubound);
for (j = 0; j < POPSIZE; j++) //初始化
{
population[j].fitness = 0; //这里会重复赋0值
population[j].rfitness = 0;
population[j].cfitness = 0;
population[j].lower[i] = lbound;
population[j].upper[i]= ubound;
population[j].gene[i] = randval(population[j].lower[i],population[j].upper[i]); //每维随机赋初值
}
}
fclose(infile);
}
/***********************************************************/
/* 随机产生low和high之间的一个任意数 */
/***********************************************************/
double randval(double low, double high)
{
double val;
val = ((double)(rand()%1000)/1000.0)*(high - low) + low;
return(val);
}
/*************************************************************/
/* 评估函数,这儿是: */
/* 0.5-((三个基因的和+0.05)sin(1/(三个基因的和+0.05)))*/
/*************************************************************/
void evaluate(void)
{
int mem;
int i;
double xx,anti_xx;
double x[NVARS+1];
double fit;
for (mem = 0; mem < POPSIZE; mem++)
{
for (i = 0; i < NVARS; i++)
x[i+1] = population[mem].gene[i];
xx=x[1]+x[2]+x[3]+0.05;
anti_xx=1/xx;
//printf("%f\n",xx*sin(anti_xx));
fit=population[mem].fitness=0.5-xx*sin(anti_xx);
//if(fit<0.5)
//printf("fitness is %f\n",fit);
}
}
/***************************************************************/
/* Keep_the_best function: 保证最优的存活 */
/***************************************************************/
void keep_the_best()
{
int mem;
int i;
cur_best = 0;
for (mem = 0; mem < POPSIZE; mem++)
{
if (population[mem].fitness > population[POPSIZE].fitness)
{
cur_best = mem;
population[POPSIZE].fitness = population[mem].fitness;
}
}
for (i = 0; i < NVARS; i++) //保存当前最优基因
population[POPSIZE].gene[i] = population[cur_best].gene[i];
}
/***************************************************************/
/* 如果上一代的最优基因优于当前一代的最优基因, */
/* 就用上一代的最优基因代替当前的最差基因 */
/***************************************************************/
void elitist()
{
int i;
double best, worst;
int best_mem, worst_mem;
best = population[0].fitness;
worst = population[0].fitness;
for (i = 0; i < POPSIZE - 1; ++i) //一次循环记录最优值与最差值
{
if(population[i].fitness > population[i+1].fitness)
{
if (population[i].fitness >= best)
{
best = population[i].fitness;
best_mem = i;
}
if (population[i+1].fitness <= worst)
{
worst = population[i+1].fitness;
worst_mem = i + 1;
}
}
else
{
if (population[i].fitness <= worst)
{
worst = population[i].fitness;
worst_mem = i;
}
if (population[i+1].fitness >= best)
{
best = population[i+1].fitness;
best_mem = i + 1;
}
}
}
if (best >= population[POPSIZE].fitness)
{
for (i = 0; i < NVARS; i++) //更新当前最优基因
population[POPSIZE].gene[i] = population[best_mem].gene[i];
population[POPSIZE].fitness = population[best_mem].fitness;
}
else
{
for (i = 0; i < NVARS; i++) //替换当前最差基因
population[worst_mem].gene[i] = population[POPSIZE].gene[i];
population[worst_mem].fitness = population[POPSIZE].fitness;
}
}
/**************************************************************/
/* 赌轮法产生下一代的所有个体 */
/**************************************************************/
void select(void)
{
int mem, i, j, k;
double sum = 0;
double p;
/* find total fitness of the population */
for (mem = 0; mem < POPSIZE; mem++)
{
sum += population[mem].fitness;
}
/* calculate relative fitness */
for (mem = 0; mem < POPSIZE; mem++) //计算每个个体相对种群的适应度
{
population[mem].rfitness = population[mem].fitness/sum; //赌轮
}
population[0].cfitness = population[0].rfitness;
/* calculate cumulative fitness */
for (mem = 1; mem < POPSIZE; mem++) //适应度累积
{
population[mem].cfitness = population[mem-1].cfitness +
population[mem].rfitness;
}
/* finally select survivors using cumulative fitness. */
//赌轮法产生下一代的所有个体
for (i = 0; i < POPSIZE; i++)
{
p = rand()%1000/1000.0; //p位于0到1之间
if (p < population[0].cfitness)
newpopulation[i] = population[0];
else
{
for (j = 0; j < POPSIZE;j++)
if (p >= population[j].cfitness &&
p<population[j+1].cfitness)
newpopulation[i] = population[j+1];
}
}
for (i = 0; i < POPSIZE; i++)
population[i] = newpopulation[i]; //更新
}
/***************************************************************/
/* 交叉操作,选择两个进行交叉的染色体*/
/***************************************************************/
void crossover(void)
{
int i, mem, one;
int first = 0; /* count of the number of members chosen */
double x;
for (mem = 0; mem < POPSIZE; ++mem)
{
x = rand()%1000/1000.0;
if (x < PXOVER) //PXOVER是交叉的概率,可以交叉
{
++first;
if (first % 2 == 0) //first是偶数
Xover(one, mem);
else
one = mem; //奇数时不交换
}
}
}
/**************************************************************/
/* 具体实施交叉操作 */
/**************************************************************/
void Xover(int one, int two)
{
int i;
int point; /* crossover point */
/* select crossover point */
if(NVARS > 1)
{
if(NVARS == 2)
point = 1;
else
point = (rand() % (NVARS - 1)) + 1;
for (i = 0; i < point; i++) //交换前point个基因
swap(&population[one].gene[i], &population[two].gene[i]);
}
}
/*************************************************************/
/* 交换 */
/*************************************************************/
void swap(double *x, double *y)
{
double temp;
temp = *x;
*x = *y;
*y = temp;
}
/**************************************************************/
/* 变异,变异后重新随机赋值 */
/**************************************************************/
void mutate(void)
{
int i, j;
double lbound, hbound;
double x;
for (i = 0; i < POPSIZE; i++)
for (j = 0; j < NVARS; j++)
{
x = rand()%1000/1000.0;
if (x < PMUTATION) //可以变异
{
/* find the bounds on the variable to be mutated */
lbound = population[i].lower[j];
hbound = population[i].upper[j];
population[i].gene[j] = randval(lbound, hbound); //所谓的变异就是重新赋值
}
}
}
/***************************************************************/
/* 输出当前一代的情况 */
/***************************************************************/
void report(void)
{
int i;
double best_val; /* best population fitness */
double avg; /* avg population fitness */
double stddev; /* std. deviation of population fitness */
double sum_square; /* sum of square for std. calc */
double square_sum; /* square of sum for std. calc */
double sum; /* total population fitness */
sum = 0.0;
sum_square = 0.0;
for (i = 0; i < POPSIZE; i++)
{
sum += population[i].fitness;
sum_square += population[i].fitness * population[i].fitness;
}
avg = sum/(double)POPSIZE;
square_sum = avg * avg * POPSIZE;
stddev = sqrt((sum_square - square_sum)/(POPSIZE - 1)); //方差或什么的
best_val = population[POPSIZE].fitness;
fprintf(galog, "\n%5d, %6.3f, %6.3f, %6.3f ", generation,
best_val, avg, stddev);
}
/**************************************************************/
/* 主函数 */
/**************************************************************/
void main(void)
{
int i;
double xx=0.05;
if ((galog = fopen("galog.txt","w"))==NULL)
{
exit(1);
}
generation = 0;
fprintf(galog, "\n generation best average standard \n");
fprintf(galog, " number value fitness deviation \n");
initialize();
evaluate();
keep_the_best();
while(generation<MAXGENS)
{
generation++;
select();
crossover();
mutate();
report();
evaluate();
elitist();
}
fprintf(galog,"\n\n Simulation completed\n");
fprintf(galog,"\n Best gene: \n");
for (i = 0; i < NVARS; i++)
{
fprintf (galog,"\n var(%d) = %3.3f",i,population[POPSIZE].gene[i]);
xx+=population[POPSIZE].gene[i];
}
fprintf(galog,"\n对应的x值是:%f",xx);
fprintf(galog,"\n\n 区间中的局部最小值 = %3.3f",0.5-population[POPSIZE].fitness);
fclose(galog);
printf("Success\n");
}
/***************************************************************/
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -