📄 intr0.c
字号:
//=================================================================
//
// intr0.c
//
// Interrupt test 0
//
//=================================================================
//####ECOSGPLCOPYRIGHTBEGIN####
// -------------------------------------------
// This file is part of eCos, the Embedded Configurable Operating System.
// Copyright (C) 1998, 1999, 2000, 2001, 2002 Red Hat, Inc.
//
// eCos is free software; you can redistribute it and/or modify it under
// the terms of the GNU General Public License as published by the Free
// Software Foundation; either version 2 or (at your option) any later version.
//
// eCos is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or
// FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
// for more details.
//
// You should have received a copy of the GNU General Public License along
// with eCos; if not, write to the Free Software Foundation, Inc.,
// 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.
//
// As a special exception, if other files instantiate templates or use macros
// or inline functions from this file, or you compile this file and link it
// with other works to produce a work based on this file, this file does not
// by itself cause the resulting work to be covered by the GNU General Public
// License. However the source code for this file must still be made available
// in accordance with section (3) of the GNU General Public License.
//
// This exception does not invalidate any other reasons why a work based on
// this file might be covered by the GNU General Public License.
//
// Alternative licenses for eCos may be arranged by contacting Red Hat, Inc.
// at http://sources.redhat.com/ecos/ecos-license/
// -------------------------------------------
//####ECOSGPLCOPYRIGHTEND####
//=================================================================
//#####DESCRIPTIONBEGIN####
//
// Author(s): jskov
// Contributors: jskov, gthomas
// Date: 1998-12-01
// Description: Simple test of MPC860 interrupt handling when the
// kernel has not been configured. Uses timer interrupts.
// Options:
//####DESCRIPTIONEND####
// #define DEBUG_PRINTFS
#ifdef DEBUG_PRINTFS
#include <cyg/infra/diag.h>
#endif
#include <pkgconf/hal.h>
#define CYGARC_HAL_COMMON_EXPORT_CPU_MACROS
#include <cyg/hal/ppc_regs.h>
#include <cyg/hal/hal_intr.h>
#include <cyg/infra/testcase.h>
#ifndef CYGIMP_HAL_COMMON_INTERRUPTS_CHAIN
#ifdef CYGSEM_HAL_POWERPC_MPC860_CPM_ENABLE
#undef CHECK
#define CHECK(b) CYG_TEST_CHECK(b,#b)
// Can't rely on Cyg_Interrupt class being defined.
#define Cyg_InterruptHANDLED 1
// This is the period between interrupts, measured in decrementer ticks.
// Period must be longer than the time required for setting up all the
// interrupt handlers.
#define PIT_PERIOD 5000
#ifdef CYGPKG_HAL_POWERPC_MBX
#define TB_PERIOD (PIT_PERIOD*384) // PTA period is 15.36 uS
#else
// This value is based on the relationship between the PIT clock
// and the TB clock. This is set in the SCCR register and the
// default value seems to be that the TB runs 128 times faster
// than the PIT. Of course, this doesn't match the documentation :-(
// Also, the basis for this is hardware strappable (set at reset time)
// so the value chosen below is a guess which works on the 860 platforms
// we have seen, other than the Motorola MBX860.
#define TB_PERIOD (PIT_PERIOD*128) // assuming 512/4 divisors
#endif
#define PIT_IRQ_LEVEL 4
#define PIT_IRQ CYGNUM_HAL_INTERRUPT_SIU_LVL4
#define TB_IRQ_LEVEL 5
#define TB_IRQ CYGNUM_HAL_INTERRUPT_SIU_LVL5
#define ID_RTC_SEC 12345
#define ID_RTC_ALR 23451
#define ID_PIT 34512
#define ID_TBA 45123
#define ID_TBB 51234
volatile cyg_uint32 count = 0;
// Time/PERIOD 0 1 2 3 4 5 6 7 8 9 10
// Interrupt PIT TBA PIT PIT TBB PIT PIT
// pit_count 0 0 0 1 1 2 2 3 3 4 4
// count 0 0 1 3 4 4 5 40 41 42
static cyg_uint32 count_verify_table[] = {1, 4, 5, 41, 42};
static int pit_count = 0;
// These are useful for debugging:
static cyg_uint32 count_actual_table[] = { -1, -1, -1, -1, -1};
static cyg_uint32 tbr_actual_table[] = { -1, -1, -1, -1, -1};
// Periodic timer ISR. Should be executing 5 times.
static cyg_uint32 isr_pit(CYG_ADDRWORD vector, CYG_ADDRWORD data)
{
cyg_uint32 verify_value;
CYG_UNUSED_PARAM(CYG_ADDRWORD, data);
CYG_ASSERT (CYGNUM_HAL_INTERRUPT_SIU_PIT == vector, "Wrong vector!");
CYG_ASSERT (ID_PIT == data, "Wrong data!");
HAL_INTERRUPT_ACKNOWLEDGE (CYGNUM_HAL_INTERRUPT_SIU_PIT);
count++;
count_actual_table[pit_count] = count;
{
cyg_uint32 tbl;
CYGARC_MFTB (TBL_R, tbl);
tbr_actual_table[pit_count] = tbl;
}
verify_value = count_verify_table[pit_count++];
#ifdef DEBUG_PRINTFS
diag_printf( "ISR_PIT executed %d of 5\n", pit_count );
#endif
CYG_ASSERT (count == verify_value, "Count wrong!");
// End of test when count is 42. Mask interrupts and print PASS text.
if (42 <= count || 5 == pit_count) {
HAL_INTERRUPT_MASK (CYGNUM_HAL_INTERRUPT_SIU_PIT);
HAL_INTERRUPT_MASK (CYGNUM_HAL_INTERRUPT_SIU_TB_A);
HAL_INTERRUPT_MASK (CYGNUM_HAL_INTERRUPT_SIU_TB_B);
#ifdef DEBUG_PRINTFS
diag_printf( "INFO: Actual counts: %d %d %d %d %d\n",
count_actual_table[0],
count_actual_table[1],
count_actual_table[2],
count_actual_table[3],
count_actual_table[4] );
diag_printf( "INFO: Actuals tbrs: %d %d %d %d %d\n",
tbr_actual_table[0],
tbr_actual_table[1],
tbr_actual_table[2],
tbr_actual_table[3],
tbr_actual_table[4] );
#endif
if (5 == pit_count) {
#ifndef CYGPKG_HAL_POWERPC_MBX
if (42 != count) {
#else
if ((42 != count) && (49 != count)) {
#endif
CYG_TEST_INFO("TB/PIT ratio does not match");
}
}
#ifndef CYGPKG_HAL_POWERPC_MBX
if (42 == count && 5 == pit_count)
#else
if (((42 == count) || (49 == count)) && (5 == pit_count))
#endif
CYG_TEST_PASS_FINISH("Intr 0 OK");
else
CYG_TEST_FAIL_FINISH("Intr 0 Failed.");
}
return Cyg_InterruptHANDLED;
}
// TimeBase A ISR. Should be executing once.
static cyg_uint32 isr_tba(CYG_ADDRWORD vector, CYG_ADDRWORD data)
{
CYG_UNUSED_PARAM(CYG_ADDRWORD, data);
CYG_ASSERT (CYGNUM_HAL_INTERRUPT_SIU_TB_A == vector, "Wrong vector!");
CYG_ASSERT (ID_TBA == data, "Wrong data!");
HAL_INTERRUPT_ACKNOWLEDGE (CYGNUM_HAL_INTERRUPT_SIU_TB_A);
count = count * 3;
#ifdef DEBUG_PRINTFS
diag_printf( "ISR_TBA executed, count now %d\n", count );
#endif
return Cyg_InterruptHANDLED;
}
// TimeBase B ISR. Should be executing once.
static cyg_uint32 isr_tbb(CYG_ADDRWORD vector, CYG_ADDRWORD data)
{
CYG_UNUSED_PARAM(CYG_ADDRWORD, data);
CYG_ASSERT (CYGNUM_HAL_INTERRUPT_SIU_TB_B == vector, "Wrong vector!");
CYG_ASSERT (ID_TBB == data, "Wrong data!");
HAL_INTERRUPT_ACKNOWLEDGE (CYGNUM_HAL_INTERRUPT_SIU_TB_B);
count = count * 8;
#ifdef DEBUG_PRINTFS
diag_printf( "ISR_TBB executed, count now %d\n", count );
#endif
return Cyg_InterruptHANDLED;
}
void intr0_main( void )
{
#ifndef CYGPKG_HAL_POWERPC_MBX
unsigned long sccr = *(volatile unsigned long *)CYGARC_REG_IMM_SCCR;
#endif
int tb_period = TB_PERIOD;
CYG_TEST_INIT();
#ifndef CYGPKG_HAL_POWERPC_MBX
#ifdef DEBUG_PRINTFS
diag_printf("sccr = %x\n", sccr);
#endif
if (sccr & 0x01000000) tb_period /= 4;
#endif
#if 0
// The A.3 revision of the CPU I'm using at the moment generates a
// machine check exception when writing to IMM_RTCSC. Smells a
// bit like the "SIU4. Spurious External Bus Transaction Following
// PLPRCR Write." CPU errata. Have to find out for sure. Run real
// time clock interrupts on level 0
{
// Still to do.
}
#endif
// Run periodic timer interrupt on level 1
{
cyg_uint16 piscr;
// Attach pit arbiter.
HAL_INTERRUPT_ATTACH (PIT_IRQ,
&hal_arbitration_isr_pit, ID_PIT, 0);
HAL_INTERRUPT_UNMASK (PIT_IRQ);
// Attach pit isr.
HAL_INTERRUPT_ATTACH (CYGNUM_HAL_INTERRUPT_SIU_PIT, &isr_pit,
ID_PIT, 0);
HAL_INTERRUPT_SET_LEVEL (CYGNUM_HAL_INTERRUPT_SIU_PIT, PIT_IRQ_LEVEL);
HAL_INTERRUPT_UNMASK (CYGNUM_HAL_INTERRUPT_SIU_PIT);
// Set period.
HAL_WRITE_UINT32 (CYGARC_REG_IMM_PITC,
(2*PIT_PERIOD) << CYGARC_REG_IMM_PITC_COUNT_SHIFT);
#ifdef DEBUG_PRINTFS
diag_printf( "PIT set to %d\n", 2*PIT_PERIOD );
#endif
// Enable.
HAL_READ_UINT16 (CYGARC_REG_IMM_PISCR, piscr);
piscr |= CYGARC_REG_IMM_PISCR_PTE;
HAL_WRITE_UINT16 (CYGARC_REG_IMM_PISCR, piscr);
}
// Run timebase interrupts on level 2
{
cyg_uint16 tbscr;
cyg_uint32 tbl;
// Attach tb arbiter.
HAL_INTERRUPT_ATTACH (TB_IRQ,
&hal_arbitration_isr_tb, ID_TBA, 0);
HAL_INTERRUPT_UNMASK (TB_IRQ);
// Attach tb isrs.
HAL_INTERRUPT_ATTACH (CYGNUM_HAL_INTERRUPT_SIU_TB_A, &isr_tba,
ID_TBA, 0);
HAL_INTERRUPT_ATTACH (CYGNUM_HAL_INTERRUPT_SIU_TB_B, &isr_tbb,
ID_TBB, 0);
HAL_INTERRUPT_SET_LEVEL (CYGNUM_HAL_INTERRUPT_SIU_TB_A, TB_IRQ_LEVEL);
HAL_INTERRUPT_UNMASK (CYGNUM_HAL_INTERRUPT_SIU_TB_A);
HAL_INTERRUPT_UNMASK (CYGNUM_HAL_INTERRUPT_SIU_TB_B);
// Set reference A & B registers.
CYGARC_MFTB (TBL_R, tbl);
tbl += tb_period*3;
HAL_WRITE_UINT32 (CYGARC_REG_IMM_TBREF0, tbl);
tbl += tb_period*4;
HAL_WRITE_UINT32 (CYGARC_REG_IMM_TBREF1, tbl);
#ifdef DEBUG_PRINTFS
diag_printf( "TB initial %d, !1 %d !2 %d\n",
tbl - 7*tb_period,
tbl - 4*tb_period,
tbl - 0*tb_period );
#endif
// Enable.
HAL_READ_UINT16 (CYGARC_REG_IMM_TBSCR, tbscr);
tbscr |= (CYGARC_REG_IMM_TBSCR_REFA | CYGARC_REG_IMM_TBSCR_REFB |
CYGARC_REG_IMM_TBSCR_TBE);
HAL_WRITE_UINT16 (CYGARC_REG_IMM_TBSCR, tbscr);
tbscr |= CYGARC_REG_IMM_TBSCR_REFAE | CYGARC_REG_IMM_TBSCR_REFBE;
HAL_WRITE_UINT16 (CYGARC_REG_IMM_TBSCR, tbscr);
}
HAL_ENABLE_INTERRUPTS();
for (;;);
}
externC void
cyg_start( void )
{
intr0_main();
}
#else // ifdef CYGSEM_HAL_POWERPC_MPC860_CPM_ENABLE
externC void
cyg_start( void )
{
CYG_TEST_INIT();
CYG_TEST_PASS_FINISH("N/A: CYGSEM_HAL_POWERPC_MPC860_CPM_ENABLE disabled");
}
#endif // ifdef CYGSEM_HAL_POWERPC_MPC860_CPM_ENABLE
#else
externC void
cyg_start( void )
{
CYG_TEST_INIT();
CYG_TEST_PASS_FINISH("N/A: CYGIMP_HAL_COMMON_INTERRUPTS_CHAIN enabled");
}
#endif // ifdef CYGIMP_HAL_COMMON_INTERRUPTS_CHAIN
// EOF intr0.c
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -