📄 edb7xxx_misc.c
字号:
KBDEOI, // CYGNUM_HAL_INTERRUPT_KBDINT 17
0, // CYGNUM_HAL_INTERRUPT_SS2RX 18
0, // CYGNUM_HAL_INTERRUPT_SS2TX 19
0, // CYGNUM_HAL_INTERRUPT_UTXINT2 20
0, // CYGNUM_HAL_INTERRUPT_URXINT2 21
#if defined(__EDB7211)
0, // CYGNUM_HAL_INTERRUPT_MCPINT 22
#endif
#if defined(__EDB7209)
0, // CYGNUM_HAL_INTERRUPT_I2SINT 22
#endif
#if defined(__EDB7312)
0, // CYGNUM_HAL_INTERRUPT_DAIINT 22
#endif
};
static struct regmap {
int first_int, last_int;
cyg_uint32 stat_reg, mask_reg;
} hal_interrupt_status_regmap[] = {
{ CYGNUM_HAL_INTERRUPT_EXTFIQ, CYGNUM_HAL_INTERRUPT_MCINT, INTSR1, INTMR1},
#if defined(__EDB7211)
{ CYGNUM_HAL_INTERRUPT_MCPINT, CYGNUM_HAL_INTERRUPT_MCPINT, INTSR3, INTMR3},
#endif
#if defined(__EDB7209)
{ CYGNUM_HAL_INTERRUPT_I2SINT, CYGNUM_HAL_INTERRUPT_I2SINT, INTSR3, INTMR3},
#endif
#if defined(__EDB7312)
{ CYGNUM_HAL_INTERRUPT_DAIINT, CYGNUM_HAL_INTERRUPT_DAIINT, INTSR3, INTMR3},
#endif
{ CYGNUM_HAL_INTERRUPT_CSINT, CYGNUM_HAL_INTERRUPT_SSEOTI, INTSR1, INTMR1},
{ CYGNUM_HAL_INTERRUPT_KBDINT, CYGNUM_HAL_INTERRUPT_URXINT2, INTSR2, INTMR2},
{ 0, 0, 0, 0 }
};
#ifdef CYGHWR_HAL_ARM_EDB7XXX_BATLOW
// This ISR is called when the battery low interrupt occurs
int
cyg_hal_batlow_isr(cyg_vector_t vector, cyg_addrword_t data, HAL_SavedRegisters *regs)
{
diag_printf("Battery low\n");
cyg_drv_interrupt_mask(CYGNUM_HAL_INTERRUPT_BLINT);
// Presumably, one would leave this masked until the battery changed
cyg_drv_interrupt_acknowledge(CYGNUM_HAL_INTERRUPT_BLINT);
return 0; // No need to run DSR
}
#endif
//
// Early stage hardware initialization
// Some initialization has already been done before we get here. For now
// just set up the interrupt environment.
void hal_hardware_init(void)
{
volatile cyg_uint32 *icr;
int vector;
// Clear and initialize instruction cache
HAL_ICACHE_INVALIDATE_ALL();
HAL_ICACHE_ENABLE();
// Any hardware/platform initialization that needs to be done.
*(volatile cyg_uint32 *)INTMR1 = 0;
*(volatile cyg_uint32 *)INTMR2 = 0;
#if !defined(__CL7111)
*(volatile cyg_uint32 *)INTMR3 = 0;
#endif
#if !defined(__CL7111) && !defined(__EDB7312)
*(volatile cyg_uint8 *)SYSCON3 = SYSCON3_CLKCTL(CPU_CLOCK);
#endif
#if 0
diag_printf("IMR1: %04x, IMR2: %04x\n",
*(volatile cyg_uint32 *)INTMR1,
*(volatile cyg_uint32 *)INTMR2);
diag_printf("Memcfg1: %08x, Memcfg2: %08x, DRAM refresh: %08x\n",
*(volatile cyg_uint32 *)MEMCFG1,
*(volatile cyg_uint32 *)MEMCFG2,
*(volatile cyg_uint8 *)DRFPR);
#endif
#define MEMCFG_BUS_WIDTH(n) (n<<0)
#define MEMCFG_BUS_WIDTH_32 (0<<0)
#define MEMCFG_BUS_WIDTH_16 (1<<0)
#define MEMCFG_BUS_WIDTH_8 (2<<0)
#define MEMCFG_WAIT_STATES(n) (n<<2) // 0 is max, 15 min
#define MEMCFG_SQAEN (1<<6)
#define MEMCFG_CLKENB (1<<7)
// These need to be checked/improved
#define CS0_CONFIG MEMCFG_BUS_WIDTH_32 | MEMCFG_WAIT_STATES(3) | MEMCFG_SQAEN
#define CS1_CONFIG MEMCFG_BUS_WIDTH_32 | MEMCFG_WAIT_STATES(4)
#define CS2_CONFIG MEMCFG_BUS_WIDTH_32 | MEMCFG_WAIT_STATES(0)
#define CS3_CONFIG MEMCFG_BUS_WIDTH_32 | MEMCFG_WAIT_STATES(0)
#define CS4_CONFIG MEMCFG_BUS_WIDTH_32 | MEMCFG_WAIT_STATES(0)
#define CS5_CONFIG MEMCFG_BUS_WIDTH_32 | MEMCFG_WAIT_STATES(0)
#define CS6_CONFIG MEMCFG_BUS_WIDTH_32 | MEMCFG_WAIT_STATES(0)
#define CS7_CONFIG MEMCFG_BUS_WIDTH_32 | MEMCFG_WAIT_STATES(0)
#if defined(__EDB7209)
*(volatile cyg_uint32 *)MEMCFG1 =
(CS0_CONFIG << 0) | // FLASH rom
(CS1_CONFIG << 8) | // NAND flash
(CS2_CONFIG << 16) | // Ethernet
(CS3_CONFIG << 24); // Parallel printer, keyboard, touch panel
*(volatile cyg_uint32 *)MEMCFG2 =
(CS4_CONFIG << 0) | // USB
(CS5_CONFIG << 8) | // Expansion
(CS6_CONFIG << 16) | // Local SRAM
(CS7_CONFIG << 24); // Boot ROM
// This value came from Cirrus, but doesn't match the recommendations above?
*(volatile cyg_uint32 *)MEMCFG1 = 0x3C001814;
// Set up GPIO lines
*(volatile cyg_uint8 *)PADDR = 0x00; // Keyboard data 0-7 input
*(volatile cyg_uint8 *)PBDDR = 0xFA; // 0 - I/O on J22
// 1 - RTS on UART1
// 2 - Ring on UART1
// 3 - SSI header, Pin 13
// 4 - NAND Command Latch Enable
// 5 - NAND Address Latch Enable
// 6 - On-board NAND Select (active low)
// 7 - SmartMedia Card Enable (active low)
*(volatile cyg_uint8 *)PBDR = 0xC0; // Everything off
*(volatile cyg_uint8 *)PDDDR = 0x40; // 0 - Diagnostic LED control
// 1 - Enable DC-DC converter for LCD
// 2 - Enable LCD
// 3 - ENable LCD Backlight
// 4 - CS4342 I2C Data
// 5 - CS4342 I2C Clock
// 6 - SmartMedia Presence indicator
// 7 - I/O on J22
*(volatile cyg_uint8 *)PDDR = 0x00; // Everything off
*(volatile cyg_uint8 *)PEDDR = 0x05; // 0 - Codec or ADC/DAC
// 1 - I/O on JP38 (0 when inserted)
// 2 - Enable touch panel
*(volatile cyg_uint8 *)PEDR = 0x01; // Enable audio (not CODEC)
// Initialize system control
*(volatile cyg_uint32 *)SYSCON2 = SYSCON2_KBWEN;
#endif
#if defined(__EDB7312)
*(volatile cyg_uint32 *)MEMCFG1 = 0x1F101710;
*(volatile cyg_uint32 *)MEMCFG2 = 0x00001F93;
// Set up GPIO lines
*(volatile cyg_uint8 *)PADDR = 0x00; // Keyboard data 0-7 input
*(volatile cyg_uint8 *)PBDDR = 0xF2;
*(volatile cyg_uint8 *)PDDDR = 0x2F;
*(volatile cyg_uint8 *)PDDDR = 0x10; // Directions are inverted!
*(volatile cyg_uint8 *)PDDR = 0x00; // Everything off
*(volatile cyg_uint8 *)PEDDR = 0x01;
// Initialize system control
*(volatile cyg_uint32 *)SYSCON1 = 0x00040100;
*(volatile cyg_uint32 *)SYSCON2 = 0x00000102;
#ifdef CPU_CLOCK_90MHZ
// We must slow down the RAM timings compared to default by adding
// wait states or it does not work.
// Slow them all down to Random=5, Seq=3 waitstates by replacing
// that field throughout the default value copied from above:
*(volatile cyg_uint32 *)MEMCFG1 = (0x1F101710 & ~0x3c3c3c3c) | 0x0c0c0c0c;
*(volatile cyg_uint32 *)MEMCFG2 = (0x00001F93 & ~0x00003c3c) | 0x00000c0c;
#endif // CPU_CLOCK_90MHZ
*(volatile cyg_uint32 *)SYSCON3 = 0x00000208 | SYSCON3_CLKCTL(CPU_CLOCK);
#ifdef CPU_CLOCK_90MHZ
// Let the clock change settle before hitting the PLL multiplier
// register to change up by a further 22.5%
asm volatile( "nop;nop;nop;nop;nop;nop;nop;nop;");
*(volatile cyg_uint32 *)EP7312_PLL_MR = EP7312_PLL_MR_FOR_90MHz;
asm volatile( "nop;nop;nop;nop;nop;nop;nop;nop;");
#endif // CPU_CLOCK_90MHZ
#endif
// Reset all interrupt masks (disable all interrupt sources)
for (vector = CYGNUM_HAL_ISR_MIN; vector < CYGNUM_HAL_ISR_COUNT; vector++) {
icr = (volatile cyg_uint32 *)hal_interrupt_clear_map[vector];
if (icr) *icr = 0; // Just a write clears the latch
}
#ifndef __EDB7312
// Turn on the DIAG LED to let the world know the board is alive
*(volatile unsigned char *)LEDFLSH = LEDFLSH_ENABLE|LEDFLSH_DUTY(16)|LEDFLSH_PERIOD(1);
#endif
#ifdef CYGHWR_HAL_ARM_EDB7XXX_BATLOW
cyg_drv_interrupt_create(CYGNUM_HAL_INTERRUPT_BLINT,
99, // Priority - what goes here?
0, // Data item passed to interrupt handler
cyg_hal_batlow_isr,
0,
&batlow_interrupt_handle,
&batlow_interrupt);
cyg_drv_interrupt_attach(batlow_interrupt_handle);
cyg_drv_interrupt_unmask(CYGNUM_HAL_INTERRUPT_BLINT);
#endif
// Initialize real-time clock (for delays, etc, even if kernel doesn't use it)
hal_clock_initialize(CYGNUM_HAL_RTC_PERIOD);
// Set up eCos/ROM interfaces
hal_if_init();
#ifdef CYGSEM_EDB7XXX_LCD_COMM
// Initialize I/O channel
lcd_comm_init();
#endif
}
//
// This routine is called to respond to a hardware interrupt (IRQ). It
// should interrogate the hardware and return the IRQ vector number.
// This code is a little convoluted to keep it general while still avoiding
// reading the hardware a lot, since the interrupt status is split across
// three separate registers.
int hal_spurious_ints;
int hal_IRQ_handler(void)
{
struct regmap *map = hal_interrupt_status_regmap;
cyg_uint32 stat;
int vector;
while (map->first_int) {
stat = *(volatile cyg_uint32 *)map->stat_reg & *(volatile cyg_uint32 *)map->mask_reg;
for (vector = map->first_int; vector <= map->last_int; vector++) {
if (stat & hal_interrupt_bitmap[vector]) return vector;
}
map++; // Next interrupt status register
}
hal_spurious_ints++;
return CYGNUM_HAL_INTERRUPT_NONE; // This shouldn't happen!
}
//
// Interrupt control
//
void hal_interrupt_mask(int vector)
{
volatile cyg_uint32 *imr;
imr = (volatile cyg_uint32 *)hal_interrupt_mask_regmap[vector];
*imr &= ~hal_interrupt_bitmap[vector];
}
void hal_interrupt_unmask(int vector)
{
volatile cyg_uint32 *imr;
imr = (volatile cyg_uint32 *)hal_interrupt_mask_regmap[vector];
*imr |= hal_interrupt_bitmap[vector];
}
void hal_interrupt_acknowledge(int vector)
{
// Some interrupt sources have a register for this.
volatile cyg_uint8 *icr;
icr = (volatile cyg_uint8 *)hal_interrupt_clear_map[vector];
if (icr) {
*icr = 0; // Any data clears interrupt
}
}
void hal_interrupt_configure(int vector, int level, int up)
{
// No interrupts are configurable on this hardware
}
void hal_interrupt_set_level(int vector, int level)
{
// No interrupts are configurable on this hardware
}
#define _CYGHWR_LAYOUT_ONLY
#include <cyg/hal/hal_platform_setup.h>
unsigned long
_edb7xxx_physical_address(unsigned long addr)
{
unsigned long res;
if (addr < DRAM_LA_END) {
res = addr + DRAM_PA;
} else {
res = addr | 0xC0000000;
}
return res;
}
/*------------------------------------------------------------------------*/
// EOF hal_misc.c
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -