📄 integrator_misc.c
字号:
//==========================================================================
//
// integrator_misc.c
//
// HAL misc board support code for ARM INTEGRATOR7
//
//==========================================================================
//####ECOSGPLCOPYRIGHTBEGIN####
// -------------------------------------------
// This file is part of eCos, the Embedded Configurable Operating System.
// Copyright (C) 1998, 1999, 2000, 2001, 2002 Red Hat, Inc.
//
// eCos is free software; you can redistribute it and/or modify it under
// the terms of the GNU General Public License as published by the Free
// Software Foundation; either version 2 or (at your option) any later version.
//
// eCos is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or
// FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
// for more details.
//
// You should have received a copy of the GNU General Public License along
// with eCos; if not, write to the Free Software Foundation, Inc.,
// 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.
//
// As a special exception, if other files instantiate templates or use macros
// or inline functions from this file, or you compile this file and link it
// with other works to produce a work based on this file, this file does not
// by itself cause the resulting work to be covered by the GNU General Public
// License. However the source code for this file must still be made available
// in accordance with section (3) of the GNU General Public License.
//
// This exception does not invalidate any other reasons why a work based on
// this file might be covered by the GNU General Public License.
//
// Alternative licenses for eCos may be arranged by contacting Red Hat, Inc.
// at http://sources.redhat.com/ecos/ecos-license/
// -------------------------------------------
//####ECOSGPLCOPYRIGHTEND####
//==========================================================================
//#####DESCRIPTIONBEGIN####
//
// Author(s): David A Rusling
// Contributors: Philippe Robin
// Date: November 7, 2000
// Purpose: HAL board support
// Description: Implementations of HAL board interfaces
//
//####DESCRIPTIONEND####
//
//===========================================================================*/
#include <pkgconf/hal.h>
#include <cyg/infra/cyg_type.h> // base types
#include <cyg/infra/cyg_trac.h> // tracing macros
#include <cyg/infra/cyg_ass.h> // assertion macros
#include <cyg/hal/hal_io.h> // IO macros
#include <cyg/hal/hal_arch.h> // Register state info
#include <cyg/hal/hal_diag.h>
#include <cyg/hal/hal_intr.h> // necessary?
#include <cyg/hal/hal_integrator.h>
/*------------------------------------------------------------------------*/
// On-board timer
/*------------------------------------------------------------------------*/
// forward declarations
void hal_if_init(void);
// declarations
static cyg_uint32 _period;
void hal_clock_initialize(cyg_uint32 period)
{
//diag_init(); diag_printf("%s(%d)\n", __PRETTY_FUNCTION__, period);
//diag_printf("psr = %x\n", psr());
HAL_WRITE_UINT32(CYG_DEVICE_TIMER_CONTROL, CTL_DISABLE); // Turn off
HAL_WRITE_UINT32(CYG_DEVICE_TIMER_LOAD, period);
HAL_WRITE_UINT32(CYG_DEVICE_TIMER_CONTROL,
CTL_ENABLE | CTL_PERIODIC | CTL_SCALE_16);
_period = period;
}
void hal_clock_reset(cyg_uint32 vector, cyg_uint32 period)
{
//diag_init(); diag_printf("%s\n", __PRETTY_FUNCTION__);
HAL_WRITE_UINT32(CYG_DEVICE_TIMER_CLEAR, 0);
_period = period;
}
void hal_clock_read(cyg_uint32 *pvalue)
{
cyg_uint32 value;
// diag_init(); diag_printf("%s\n", __PRETTY_FUNCTION__);
HAL_READ_UINT32(CYG_DEVICE_TIMER_CURRENT, value);
value &= 0xFFFF;
*pvalue = _period - (value & 0xFFFF); // Note: counter is only 16 bits
// and decreases
}
// Delay for some usecs.
void hal_delay_us(cyg_uint32 delay)
{
#if 0
int i;
for( i = 0; i < delay; i++ );
#else
cyg_uint32 now, last, diff, ticks;
// The timer actually runs at 1.25 ticks per micrsecond.
// Adjust the supplied delay to compensate.
delay *= 4;
delay /= 5;
hal_clock_read(&last);
diff = ticks = 0;
while (delay > ticks) {
hal_clock_read(&now);
// Cope with wrap-around of timer
if (now < last)
diff = ((_period - last) + now);
else
diff = (now - last);
last = now;
ticks += diff;
}
#endif
}
#if defined(CYGPKG_HAL_ARM_INTEGRATOR_ARM7)
void hal_hardware_init(void)
#elif defined(CYGPKG_HAL_ARM_INTEGRATOR_ARM9)
void plf_hardware_init(void)
#endif
{
// Any hardware/platform initialization that needs to be done.
// Clear all interrupt sources
HAL_WRITE_UINT32(CYG_DEVICE_IRQ_EnableClear, 0xFFFF);
#ifndef CYGFUN_HAL_COMMON_KERNEL_SUPPORT
HAL_CLOCK_INITIALIZE( CYGNUM_HAL_RTC_PERIOD );
#endif
// FIXME: The line with the thumb check is a hack, allowing
// the farm to run test. Problem is that virtual vector table
// API needs to be ARM/Thumb consistent. Will fix later.
#if !defined(__thumb__) && !defined(CYGPKG_HAL_ARM_INTEGRATOR_ARM9)
// Set up eCos/ROM interfaces
hal_if_init();
#endif
}
//
// This routine is called to respond to a hardware interrupt (IRQ). It
// should interrogate the hardware and return the IRQ vector number.
int hal_IRQ_handler(void)
{
// Do hardware-level IRQ handling
int irq_status, vector;
HAL_READ_UINT32(CYG_DEVICE_IRQ_Status, irq_status);
//diag_init(); diag_printf("IRQ status: 0x%x\n", irq_status);
for (vector = 1; vector <= 16; vector++) {
if (irq_status & (1<<vector)) return vector;
}
return -1 ; // This shouldn't happen!
}
//
// Interrupt control
//
void hal_interrupt_mask(int vector)
{
//diag_init(); diag_printf("hal_interrupt_mask(%d)\n", vector);
HAL_WRITE_UINT32(CYG_DEVICE_IRQ_EnableClear, 1<<vector);
}
#if 0
void hal_interrupt_status(void)
{
int irq_status, irq_enable, timer_status, timer_value, timer_load;
HAL_READ_UINT32(CYG_DEVICE_IRQ_Status, irq_status);
HAL_READ_UINT32(CYG_DEVICE_IRQ_Enable, irq_enable);
HAL_READ_UINT32(CYG_DEVICE_TIMER_LOAD, timer_load);
HAL_READ_UINT32(CYG_DEVICE_TIMER_CURRENT, timer_value);
HAL_READ_UINT32(CYG_DEVICE_TIMER_CONTROL, timer_status);
diag_printf("Interrupt: IRQ: %x.%x, TIMER: %x.%x.%x, psr: %x\n",
irq_status, irq_enable, timer_status, timer_value,
timer_load, psr());
}
#endif
void hal_interrupt_unmask(int vector)
{
//diag_init(); diag_printf("hal_interrupt_unmask(%d)\n", vector);
HAL_WRITE_UINT32(CYG_DEVICE_IRQ_EnableSet, 1<<vector);
}
void hal_interrupt_acknowledge(int vector)
{
//diag_init(); diag_printf("%s(%d)\n", __PRETTY_FUNCTION__, vector);
}
void hal_interrupt_configure(int vector, int level, int up)
{
//diag_init(); diag_printf("%s(%d,%d,%d)\n", __PRETTY_FUNCTION__, vector, level, up);
}
void hal_interrupt_set_level(int vector, int level)
{
//diag_init(); diag_printf("%s(%d,%d)\n", __PRETTY_FUNCTION__, vector, level);
}
void hal_show_IRQ(int vector, int data, int handler)
{
// diag_printf("IRQ - vector: %x, data: %x, handler: %x\n", vector, data, handler);
}
/*---------------------------------------------------------------------------*/
__externC void cyg_plf_pci_init(void)
{
// Only do this for non-RAM startups. If we do it during RAM
// startup and we are using the ethernet for debugging, this kills
// the ethernet controller.
#ifndef CYG_HAL_STARTUP_RAM
volatile int i, j;
/* setting this register will take the V3 out of reset */
*(volatile cyg_uint32 *)(INTEGRATOR_SC_PCIENABLE) = 1;
/* wait a few usecs to settle the device and the PCI bus */
for (i = 0; i < 100 ; i++)
j = i + 1;
/* Now write the Base I/O Address Word to V3_BASE + 0x6C */
*(volatile cyg_uint16 *)(V3_BASE + V3_LB_IO_BASE) = (cyg_uint16)(V3_BASE >> 16);
do {
*(volatile cyg_uint8 *)(V3_BASE + V3_MAIL_DATA) = 0xAA;
*(volatile cyg_uint8 *)(V3_BASE + V3_MAIL_DATA + 4) = 0x55;
} while (*(volatile cyg_uint8 *)(V3_BASE + V3_MAIL_DATA) != 0xAA ||
*(volatile cyg_uint8 *)(V3_BASE + V3_MAIL_DATA + 4) != 0x55);
/* Make sure that V3 register access is not locked, if it is, unlock it */
if ((*(volatile cyg_uint16 *)(V3_BASE + V3_SYSTEM) & V3_SYSTEM_M_LOCK)
== V3_SYSTEM_M_LOCK)
*(volatile cyg_uint16 *)(V3_BASE + V3_SYSTEM) = 0xA05F;
/* Ensure that the slave accesses from PCI are disabled while we */
/* setup windows */
*(volatile cyg_uint16 *)(V3_BASE + V3_PCI_CMD) &=
~(V3_COMMAND_M_MEM_EN | V3_COMMAND_M_IO_EN);
/* Clear RST_OUT to 0; keep the PCI bus in reset until we've finished */
*(volatile cyg_uint16 *)(V3_BASE + V3_SYSTEM) &= ~V3_SYSTEM_M_RST_OUT;
/* Make all accesses from PCI space retry until we're ready for them */
*(volatile cyg_uint16 *)(V3_BASE + V3_PCI_CFG) |= V3_PCI_CFG_M_RETRY_EN;
/* Set up any V3 PCI Configuration Registers that we absolutely have to */
/* LB_CFG controls Local Bus protocol. */
/* Enable LocalBus byte strobes for READ accesses too. */
/* set bit 7 BE_IMODE and bit 6 BE_OMODE */
*(volatile cyg_uint16 *)(V3_BASE + V3_LB_CFG) |= 0x0C0;
/* PCI_CMD controls overall PCI operation. */
/* Enable PCI bus master. */
*(volatile cyg_uint16 *)(V3_BASE + V3_PCI_CMD) |= 0x04;
/* PCI_MAP0 controls where the PCI to CPU memory window is on Local Bus*/
*(volatile cyg_uint32 *)(V3_BASE + V3_PCI_MAP0) = (INTEGRATOR_BOOT_ROM_BASE) |
(V3_PCI_MAP_M_ADR_SIZE_512M |
V3_PCI_MAP_M_REG_EN |
V3_PCI_MAP_M_ENABLE);
/* PCI_BASE0 is the PCI address of the start of the window */
*(volatile cyg_uint32 *)(V3_BASE + V3_PCI_BASE0) = INTEGRATOR_BOOT_ROM_BASE;
/* PCI_MAP1 is LOCAL address of the start of the window */
*(volatile cyg_uint32 *)(V3_BASE + V3_PCI_MAP1) = (INTEGRATOR_HDR0_SDRAM_BASE) |
(V3_PCI_MAP_M_ADR_SIZE_1024M | V3_PCI_MAP_M_REG_EN |
V3_PCI_MAP_M_ENABLE);
/* PCI_BASE1 is the PCI address of the start of the window */
*(volatile cyg_uint32 *)(V3_BASE + V3_PCI_BASE1) = INTEGRATOR_HDR0_SDRAM_BASE;
/* Set up the windows from local bus memory into PCI configuration, */
/* I/O and Memory. */
/* PCI I/O, LB_BASE2 and LB_MAP2 are used exclusively for this. */
*(volatile cyg_uint16 *)(V3_BASE +V3_LB_BASE2) =
((CPU_PCI_IO_ADRS >> 24) << 8) | V3_LB_BASE_M_ENABLE;
*(volatile cyg_uint16 *)(V3_BASE + V3_LB_MAP2) = 0;
/* PCI Configuration, use LB_BASE1/LB_MAP1. */
/* PCI Memory use LB_BASE0/LB_MAP0 and LB_BASE1/LB_MAP1 */
/* Map first 256Mbytes as non-prefetchable via BASE0/MAP0 */
/* (INTEGRATOR_PCI_BASE == PCI_MEM_BASE) */
*(volatile cyg_uint32 *)(V3_BASE + V3_LB_BASE0) =
INTEGRATOR_PCI_BASE | (0x80 | V3_LB_BASE_M_ENABLE);
*(volatile cyg_uint16 *)(V3_BASE + V3_LB_MAP0) =
((INTEGRATOR_PCI_BASE >> 20) << 0x4) | 0x0006;
/* Map second 256 Mbytes as prefetchable via BASE1/MAP1 */
*(volatile cyg_uint32 *)(V3_BASE + V3_LB_BASE1) =
INTEGRATOR_PCI_BASE | (0x84 | V3_LB_BASE_M_ENABLE);
*(volatile cyg_uint16 *)(V3_BASE + V3_LB_MAP1) =
(((INTEGRATOR_PCI_BASE + SZ_256M) >> 20) << 4) | 0x0006;
/* Allow accesses to PCI Configuration space */
/* and set up A1, A0 for type 1 config cycles */
*(volatile cyg_uint16 *)(V3_BASE + V3_PCI_CFG) =
((*(volatile cyg_uint16 *)(V3_BASE + V3_PCI_CFG)) &
~(V3_PCI_CFG_M_RETRY_EN | V3_PCI_CFG_M_AD_LOW1) ) |
V3_PCI_CFG_M_AD_LOW0;
/* now we can allow in PCI MEMORY accesses */
*(volatile cyg_uint16 *)(V3_BASE + V3_PCI_CMD) =
(*(volatile cyg_uint16 *)(V3_BASE + V3_PCI_CMD)) | V3_COMMAND_M_MEM_EN;
/* Set RST_OUT to take the PCI bus is out of reset, PCI devices can */
/* initialise and lock the V3 system register so that no one else */
/* can play with it */
*(volatile cyg_uint16 *)(V3_BASE + V3_SYSTEM) =
(*(volatile cyg_uint16 *)(V3_BASE + V3_SYSTEM)) | V3_SYSTEM_M_RST_OUT;
*(volatile cyg_uint16 *)(V3_BASE + V3_SYSTEM) =
(*(volatile cyg_uint16 *)(V3_BASE + V3_SYSTEM)) | V3_SYSTEM_M_LOCK;
#endif
}
/*---------------------------------------------------------------------------*/
/* End of hal_misc.c */
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -