📄 flash.c
字号:
#define ID_CMD 0x90
#define PROG_CMD 0xA0
#define STOP_CMD 0xF0
#define MAN_ATMEL 0x1F
#define ATMEL_AT29C040_ID 0X5B
#define ATMEL_AT29C040A_ID 0XA4
#define ATMEL_AT29C1024_ID 0X25
#define ATMEL_SECTOR_SIZE 256
#define ATMEL_MAX_SECTORS 2048
int manuf_code, device_code, sector_size, max_no_of_sectors, word_mode;
volatile char *FLASH = (volatile char *)0x24000000;
int
identify_FLASH(void )
{
// enable write to the Flash
flashWriteEnable();
// Enter Software Product Identification Mode
FLASH[SEQ_ADD1] = START_CMD1;
FLASH[SEQ_ADD2] = START_CMD2;
FLASH[SEQ_ADD1] = ID_CMD;
// Wait at least 10ms
cyg_thread_delay(2);
// Read Manufacturer and device code from the device
manuf_code = FLASH[0];
device_code = FLASH[1];
diag_printf("manuf: %x, device: %x\n", manuf_code, device_code);
// Exit Software Product Identification Mode
FLASH[SEQ_ADD1] = START_CMD1;
FLASH[SEQ_ADD2] = START_CMD2;
FLASH[SEQ_ADD1] = STOP_CMD;
// Wait at least 10ms
cyg_thread_delay(5)
// disble write to the Flash
flashWriteDisable();;
if (manuf_code != MAN_ATMEL) {
diag_printf ( "Error: Wrong Manufaturer: %02x\n",manuf_code );
return (0);
}
switch (device_code) {
case ATMEL_AT29C040A_ID:
diag_printf ("AT29C040A recognised\n");
sector_size = ATMEL_SECTOR_SIZE;
max_no_of_sectors = ATMEL_MAX_SECTORS;
word_mode = FALSE;
break;
case ATMEL_AT29C1024_ID:
diag_printf ("AT29C1024 recognised\n");
sector_size = ATMEL_SECTOR_SIZE;
max_no_of_sectors = ATMEL_MAX_SECTORS;
word_mode = TRUE;
break;
default :
diag_printf ( "Error: Unsupported device: %02x\n", device_code);
return (0);
}
return (1);
}
void
write_sector(int num, char *buf)
{
int i, cnt;
volatile char *wrt = (volatile int *)&FLASH[num*sector_size];
// diag_printf("Writing to %08x\n", wrt);
// Enter Program Mode
FLASH[SEQ_ADD1] = START_CMD1;
FLASH[SEQ_ADD2] = START_CMD2;
FLASH[SEQ_ADD1] = PROG_CMD;
// Note: write bytes as longs regardless of bus width
for (i = 0; i < sector_size; i++) {
wrt[i] = buf[i];
}
// Wait for sector to program
cnt = 0;
i = sector_size - 1;
while (wrt[i] != buf[i]) {
if (cnt++ > 0x01000000) break;
}
// diag_printf("Out - i: %d, wrt[i] = %08X.%08X, buf[i] = %08X, count = %x\n", i, &wrt[i], wrt[i], buf[i], cnt);
// Verify
for (i = 0; i < sector_size; i++) {
for (cnt = 0; cnt < 10; cnt++) {
if (*wrt == *buf) break;
cyg_thread_delay(1);
}
if (cnt == 10) {
diag_printf("Can't program at 0x%08X: %02X not %02X\n", wrt, *wrt, *buf);
}
wrt++; buf++;
}
}
void
flashWriteEnable(void)
{
volatile unsigned int *ebi_csr1 = (volatile unsigned int *)INTEGRATOR_EBI_CSR1;
// allow write access to EBI_CSR1 area (Flash)
*ebi_csr1 |= INTEGRATOR_EBI_WRITE_ENABLE;
if (!(*ebi_csr1 & INTEGRATOR_EBI_WRITE_ENABLE)) {
*(volatile unsigned int *)INTEGRATOR_EBI_LOCK = 0xA05F;
*ebi_csr1 |= INTEGRATOR_EBI_WRITE_ENABLE;
*(volatile unsigned int *)INTEGRATOR_EBI_LOCK = 0;
}
/* Enable Vpp and allow write access to Flash in system controller */
*(volatile unsigned int *)INTEGRATOR_SC_CTRLS = FL_SC_CONTROL;
}
//
// flashWriteDisable: disable write access to the Flash memory
//
void
flashWriteDisable(void)
{
volatile unsigned int *ebi_csr1 = (volatile unsigned int *)INTEGRATOR_EBI_CSR1;
// disable write access to EBI_CSR1 area (Flash)
*ebi_csr1 &= ~INTEGRATOR_EBI_WRITE_ENABLE;
if (*ebi_csr1 & INTEGRATOR_EBI_WRITE_ENABLE) {
*(volatile unsigned int *)INTEGRATOR_EBI_LOCK = 0xA05F;
*ebi_csr1 &= ~INTEGRATOR_EBI_WRITE_ENABLE;
*(volatile unsigned int *)INTEGRATOR_EBI_LOCK = 1;
}
// Disable Vpp and disable write access to Flash in system controller
*(volatile unsigned int *)INTEGRATOR_SC_CTRLS = 0;
}
// S-record download code - viciously 'adapted' from "kernel/src/sload/sload.c"
/*---------------------------------------------------------------------------*/
/*
//
// An srecord looks like this:
//
// byte count-+ address
// start ---+ | | data +- checksum
// | | | |
// S01000006F6B692D746573742E73726563E4
// S315000448600000000000000000FC00005900000000E9
// S31A0004000023C1400037DE00F023604000377B009020825000348D
// S30B0004485A0000000000004E
// S70500040000F6
//
// S<type><length><address><data><checksum>
//
// Where
// - length (2 characters)
// is the number of bytes following upto the checksum. Note that
// this is not the number of chars following, since it takes two
// chars to represent a byte.
// - type (2 characters)
// is one of:
// 0) header record
// 1) two byte address data record
// 2) three byte address data record
// 3) four byte address data record
// 5) record containing the number of S1, S2, or S3 records
// 7) four byte address termination record
// 8) three byte address termination record
// 9) two byte address termination record
//
// - address (4, 6, or 8 characters)
// is the start address of the data following, or in the case of
// a termination record, the start address of the image
// - data (0-2n characters)
// is the data.
// - checksum (2 characters)
// is the sum of all the raw byte data in the record, from the length
// upwards, modulo 256 and subtracted from 255.
//
// Useful S-records for testing purposes:
// Start record:
// S00B0000737461303030447563
// This sets the default address to be 0x02005000:
// S31A020050002700801481C4E0B0A15000000100000091D02000018F
// S31A0200501500000001000000010000002700801881C4E2E4A150C1
// S311020080A42407070A090B0A0781050000E1
// Termination record:
// S70502005000A8
//
*/
#define S0 0
#define S1 1
#define S2 2
#define S3 3
#define S5 5
#define S7 7
#define S8 8
#define S9 9
/*---------------------------------------------------------------------------*/
int hex2digit(char c)
{
if( c & 0x40 ) c += 9;;
return c &0x0f;
// return ( c <= '9' ? c - '0' :
// c <= 'Z' ? c - 'A' + 10 :
// c - 'a' + 10);
}
/*---------------------------------------------------------------------------*/
bool load_srecords(char (*readc)(),
CYG_ADDRESS *start,
int *size)
{
CYG_ADDRESS addr, load_addr;
int addrsize;
int length;
int i;
cyg_uint8 chksum, ochksum;
cyg_uint8 val;
cyg_uint8 *tdata;
char s;
char type;
char len0;
char len1;
bool first = true;
do {
// Skip whitespace characters until we find something that
// might be an 'S'.
do {
s = readc();
} while( s == '\r' || s == '\n' || s == ' ');
// Check that this is an S record
if( s != 'S' ) {
diag_printf("Invalid 'S' record\n");
return false;
}
// First 4 bytes are standard S + type + len
type = readc();
len0 = readc();
len1 = readc();
// decode the type
type = hex2digit(type);
// determine address size
switch (type) {
case S0: // start records have no address
addrsize = 0;
break;
case S1: // two byte address
case S9:
addrsize = 4;
break;
case S2: // 3 byte address
case S8:
addrsize = 6;
break;
case S3: // 4 byte address
case S7:
addrsize = 8;
break;
}
length = hex2digit (len0) << 4;
length |= hex2digit (len1);
chksum = length;
// read the address
addr = 0;
for (i = 0; i < addrsize; i++) {
val = hex2digit(readc());
addr = (addr << 4) | val;
}
// calculate the checksum, which is done by the byte, not the digit
for (i = 0; i < addrsize*4; i += 8) {
chksum += ((addr >> i) & 0xff);
}
// decide where to load this data
if (first && (type != S0)) {
load_addr = addr;
first = false;
}
// read the data and put it directly into memory where it belongs
tdata = (cyg_uint8 *)((addr - load_addr) + flash_buffer);
if (type < S7) {
*size = (addr - load_addr);
}
val = 0;
for (i = 0; i < ((length - 1) * 2) - addrsize; i += 2 ) {
val = hex2digit (readc()) << 4;
val |= hex2digit (readc());
chksum += val;
if( type != S0 ) *tdata++ = val;
if (type < S7) *size = *size + 1;
}
// now get the old checksum
ochksum = hex2digit(readc()) << 4;
ochksum |= hex2digit(readc());
chksum = ~chksum;
if (chksum != ochksum) {
diag_printf("Bad checksum - addr: %x\n", addr);
return false;
}
} while( type < S7 );
*start = addr;
return true;
}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -