📄 external_timer.c
字号:
//=============================================================================
//
// external_timer.c - Cyclone Diagnostics
//
//=============================================================================
//####ECOSGPLCOPYRIGHTBEGIN####
// -------------------------------------------
// This file is part of eCos, the Embedded Configurable Operating System.
// Copyright (C) 1998, 1999, 2000, 2001, 2002 Red Hat, Inc.
//
// eCos is free software; you can redistribute it and/or modify it under
// the terms of the GNU General Public License as published by the Free
// Software Foundation; either version 2 or (at your option) any later version.
//
// eCos is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or
// FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
// for more details.
//
// You should have received a copy of the GNU General Public License along
// with eCos; if not, write to the Free Software Foundation, Inc.,
// 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.
//
// As a special exception, if other files instantiate templates or use macros
// or inline functions from this file, or you compile this file and link it
// with other works to produce a work based on this file, this file does not
// by itself cause the resulting work to be covered by the GNU General Public
// License. However the source code for this file must still be made available
// in accordance with section (3) of the GNU General Public License.
//
// This exception does not invalidate any other reasons why a work based on
// this file might be covered by the GNU General Public License.
//
// Alternative licenses for eCos may be arranged by contacting Red Hat, Inc.
// at http://sources.redhat.com/ecos/ecos-license/
// -------------------------------------------
//####ECOSGPLCOPYRIGHTEND####
//=============================================================================
//#####DESCRIPTIONBEGIN####
//
// Author(s): Scott Coulter, Jeff Frazier, Eric Breeden
// Contributors:
// Date: 2001-01-25
// Purpose:
// Description:
//
//####DESCRIPTIONEND####
//
//===========================================================================*/
#include <redboot.h>
#include <cyg/hal/hal_iop310.h> // Hardware definitions
#include <cyg/hal/hal_intr.h> // Interrupt names
#include "iq80310.h"
#include "test_menu.h"
extern int enable_external_interrupt (int int_id);
extern int disable_external_interrupt (int int_id);
extern int isr_connect(int int_num, void (*handler)(int), int arg);
extern int isr_disconnect(int int_num);
extern char xgetchar(void);
volatile int timer_ticks;
/* interrupt handler for the PAL-based external timer */
void ext_timer_handler (int arg)
{
/* increment tick counter */
timer_ticks++;
/* to clear the timer interrupt, clear the timer interrupt
enable, then re-set the int. enable bit */
/* 01/05/01 jwf */
/* _restart_tmr(); */
EXT_TIMER_INT_DISAB();
EXT_TIMER_INT_ENAB();
return;
}
/* timer count must be written 8 bits at a time */
void write_timer_count (UINT32 count)
{
UINT8 cnt_word;
/* first ensure that there are only 22 bits of count data */
count &= 0x003fffff;
/* grab least significant 8 bits of timer value */
cnt_word = (UINT8)(count & 0xff);
*TIMER_LA0_REG_ADDR = cnt_word;
/* grab next 8 bits of timer value */
count = (count >> 8);
cnt_word = (UINT8)(count & 0xff);
*TIMER_LA1_REG_ADDR = cnt_word;
/* grab last 6 bits of timer value */
count = (count >> 8);
cnt_word = (UINT8)(count & 0x3f);
*TIMER_LA2_REG_ADDR = cnt_word;
return;
}
/* timer must be read 6 bits at a time */
UINT32 read_timer_count (void)
{
UINT8 timer_cnt0, timer_cnt1, timer_cnt2, timer_cnt3;
UINT8 timer_byte0, timer_byte1, timer_byte2;
UINT32 count;
/* first read latches the count */
timer_cnt0 = (*TIMER_LA0_REG_ADDR & TIMER_COUNT_MASK);
timer_cnt1 = (*TIMER_LA1_REG_ADDR & TIMER_COUNT_MASK);
timer_cnt2 = (*TIMER_LA2_REG_ADDR & TIMER_COUNT_MASK);
timer_cnt3 = (*TIMER_LA3_REG_ADDR & 0xf); /* only 4 bits in most sig. */
/* now build up the count value */
timer_byte0 = (((timer_cnt0 & 0x20) >> 1) | (timer_cnt0 & 0x1f));
timer_byte1 = (((timer_cnt1 & 0x20) >> 1) | (timer_cnt1 & 0x1f));
timer_byte2 = (((timer_cnt2 & 0x20) >> 1) | (timer_cnt2 & 0x1f));
count = ((timer_cnt3 << 18) | (timer_byte2 << 12) | (timer_byte1 << 6) |
timer_byte0);
return (count);
}
/* 12/18/00 jwf */
/* This test reads the timer la0-la3 registers on the fly while an up count is in progress. */
void counter_test (void)
{
/* ff max, b0-b7, b0-b7 contain timer load data */
unsigned char TmrLa0Write=0xff;
/* ff max, b8-b15, b0-b7 contain timer load data */
unsigned char TmrLa1Write=0xff;
/* 3f max, b16-b21, b0-b5 contain timer load data */
unsigned char TmrLa2Write=0x3f;
unsigned char TmrLa3Write=0x00; /* x - don't care */
unsigned long int TmrLa0Read=0;
unsigned long int TmrLa1Read=0;
unsigned long int TmrLa2Read=0;
unsigned long int TmrLa3Read=0;
unsigned long int temp3=0;
unsigned long int temp4=0;
unsigned long int CntInit=0;
unsigned long int CurrentCount;
unsigned long int LastCount = 0;
unsigned long int LastLastCount = 0;
char Error = FALSE;
unsigned long int sample;
unsigned long int index;
const int MAX_N_PASSES = 10; /* N times the counter shall wrap around */
/* N samples to cover the full range of count,
0x3fffff/0x40 = 0xffff <--> 65535d, use 65536 to guarantee
a counter wrap around occurs */
const unsigned long int MAX_N_SAMPLES = 65536;
/* allocate 4 bytes per sample for a 0x0 - 0x3fffff count range to
hold contents of registers LA0-LA3 */
unsigned long int MAX_N_SIZE = MAX_N_PASSES * MAX_N_SAMPLES * 4;
unsigned char *data;
// Arbitrarily pick a spot in memory.
// RedBoot won't ever use more than 1MB.
data = (unsigned char *) MEMBASE_DRAM + (1*1024*1024);
if (data != NULL) {
printf("Allocated %d bytes\n", MAX_N_SIZE);
/* load control data to disable timer enable b0=0 and timer disable
interrupt b1=0, write to timer enable port */
EXT_TIMER_INT_DISAB();
EXT_TIMER_CNT_DISAB();
/* write timer la0 port count data */
*TIMER_LA0_REG_ADDR = TmrLa0Write;
/* write timer la1 port count data */
*TIMER_LA1_REG_ADDR = TmrLa1Write;
/* write timer la2 port count data */
*TIMER_LA2_REG_ADDR = TmrLa2Write;
/* write timer la3 port count data */
*TIMER_LA3_REG_ADDR = TmrLa3Write;
CntInit = TmrLa0Write + (TmrLa1Write << 8 ) + (TmrLa2Write << 16 );
printf("Timer load data = 0x%x\n", CntInit );
printf("Reading Timer registers LA0-LA3 on the fly...\n");
/* load control data to enable timer counter and write control data
to start the counter */
EXT_TIMER_CNT_ENAB();
/* sample the timer counter on the fly and store LA0-3 register
contents in an array */
/* read LSB register first to latch 22 bits data into four la
registers */
for (sample=0, index=0; sample < (MAX_N_PASSES * MAX_N_SAMPLES); sample++, index += 4) {
/* bits 0 1 2 3 4 6 contain count data b0-b5 */
data[index] = *TIMER_LA0_REG_ADDR;
/* bits 0 1 2 3 4 6 contain count data b6-b11 */
data[index+1] = *TIMER_LA1_REG_ADDR;
/* bits 0 1 2 3 4 6 contain count data b12-b17 */
data[index+2] = *TIMER_LA2_REG_ADDR;
/* bits 0 1 2 3 contain count data b18-b21 */
data[index+3] = *TIMER_LA3_REG_ADDR;
}
printf("Checking for errors...\n" );
/* Assemble and check recorded register data for errors */
for (sample=0, index=0; sample < (MAX_N_PASSES * MAX_N_SAMPLES) ;sample++, index += 4) {
/* Assembles counter data that was read on the fly */
/* xbxbbbbb */
/* 01000000 = 0x40 */
/* 00011111 = 0x1F */
data[index] &= 0x7f; /* mask all unused bits */
temp3=data[index];
temp4=data[index];
temp3 &= 0x40; /* isolate bit 6 */
temp3 = temp3 >> 1; /* shift bit 6 to bit 5 */
temp4 &= 0x1f; /* isolate bits 0-4 */
TmrLa0Read = temp3 + temp4;
data[index+1] &= 0x7f; /* mask all unused bits */
temp3=data[index+1];
temp4=data[index+1];
temp3 &= 0x40; /* isolate bit 6 */
temp3 = temp3 >> 1; /* shift bit 6 to bit 5 */
temp4 &= 0x1f; /* isolate bits 0-4 */
TmrLa1Read = temp3 + temp4;
data[index+2] &= 0x7f; /* mask all unused bits */
temp3=data[index+2];
temp4=data[index+2];
temp3 &= 0x40; /* isolate bit 6 */
temp3 = temp3 >> 1; /* shift bit 6 to bit 5 */
temp4 &= 0x1f; /* isolate bits 0-4 */
TmrLa2Read = temp3 + temp4;
data[index+3] &= 0x0f; /* mask all unused bits */
TmrLa3Read = data[index+3];
/* sum timer count data */
CurrentCount = TmrLa0Read + (TmrLa1Read << 6)
+ (TmrLa2Read << 12) + (TmrLa3Read << 18);
if (sample == 0) {
LastLastCount = 0;
LastCount = CurrentCount;
}
if (sample == 1) {
LastLastCount = LastCount;
LastCount = CurrentCount;
}
/* check for data anomaly, is count value read 2 samples ago
greater than the count value read 1 sample ago */
if (sample > 1) {
/* print error value (LastCount) positioned in between the
previous and current values */
if (LastLastCount > LastCount && CurrentCount > LastLastCount) {
/* show error only, do not show a counter wrap around
reading, print error value (LastCount) positioned in
between the previous and current values */
printf("0x%x 0x%x 0x%x \n", LastLastCount, LastCount, CurrentCount );
Error = TRUE; /* set flag to error condition */
}
LastLastCount = LastCount;
LastCount = CurrentCount;
}
}
/* load control data to stop timer and reset timer interrupt */
EXT_TIMER_CNT_DISAB();
} else
printf( "Cannot allocate memory.\n" );
if (Error == TRUE)
printf("Timer LA0-3 register read test FAILED.\n");
else
printf("Timer LA0-3 register read test PASSED.\n");
}
/* initialize timer for diagnostic use */
void init_external_timer(void)
{
#if 0
/* disable timer in case it was running */
EXT_TIMER_INT_DISAB();
EXT_TIMER_CNT_DISAB();
timer_ticks = 0;
/* connect the timer ISR */
isr_connect (TIMER_INT_ID, ext_timer_handler, 0);
/* enable the external interrupt */
if (enable_external_interrupt(TIMER_INT_ID) != OK)
printf("ERROR enabling EXT TIMER interrupt!\n");
#else
hal_clock_initialize(CYGNUM_HAL_RTC_PERIOD);
#endif
}
/* uninitialize timer after diagnostics */
void uninit_external_timer(void)
{
#if 0
/* disable timer */
EXT_TIMER_INT_DISAB();
EXT_TIMER_CNT_DISAB();
/* disable and disconnect timer interrupts */
disable_external_interrupt(TIMER_INT_ID);
isr_disconnect (TIMER_INT_ID);
#endif
}
/* 02/02/01 jwf */
/* delay_ms - delay specified number of milliseconds */
void delay_ms(int num_ms)
{
HAL_DELAY_US(num_ms * 1000);
}
/* test the 32 bit timer inside the CPLD, U17 */
void timer_test (MENU_ARG arg)
{
volatile int i;
UINT32 count;
/***** Perform 10 second count at 100 ticks/sec ****/
/* for the test we will setup the timer to generate a 10msec tick */
count = EXT_TIMER_10MSEC_COUNT;
/* write the initial count to the timer */
write_timer_count (count);
/* enable the interrupt at the timer */
EXT_TIMER_INT_ENAB();
/* enable the timer to count */
EXT_TIMER_CNT_ENAB();
printf ("Counting at %d Ticks Per Second.\n", TICKS_10MSEC);
printf ("Numbers should appear on 1 second increments...\n");
for (i = 0; i < 10; i++) {
while (timer_ticks < TICKS_10MSEC)
;
printf ("%d ", i);
timer_ticks = 0;
}
printf ("\nDone\n\n");
/* disable timer */
EXT_TIMER_INT_DISAB();
EXT_TIMER_CNT_DISAB();
/***** Perform 10 second count at 200 ticks/sec ****/
count = EXT_TIMER_5MSEC_COUNT;
write_timer_count (count);
timer_ticks = 0;
/* enable the interrupt at the timer */
EXT_TIMER_INT_ENAB();
/* enable the timer to count */
EXT_TIMER_CNT_ENAB();
printf ("Counting at %d Ticks Per Second.\n", TICKS_5MSEC);
printf ("Numbers should appear on 1 second increments...\n");
for (i = 0; i < 10; i++) {
while (timer_ticks < TICKS_5MSEC)
;
printf ("%d ", i);
timer_ticks = 0;
}
printf ("\nDone\n\n");
/* disable timer */
EXT_TIMER_INT_DISAB();
EXT_TIMER_CNT_DISAB();
/* 12/18/00 jwf */
uninit_external_timer(); /* disable interrupt */
counter_test();
init_external_timer(); /* enable interrupt */
printf("\nExternal Timer Test Done\n");
/* 12/18/00 jwf */
printf("\n\nStrike <CR> to exit this test." );
while (xgetchar() != 0x0d);
return;
} /* end timer_test() */
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -