📄 ixp425_misc.c
字号:
//==========================================================================
//
// ixp425_misc.c
//
// HAL misc board support code for Intel IXP425 Network Processor
//
//==========================================================================
//####ECOSGPLCOPYRIGHTBEGIN####
// -------------------------------------------
// This file is part of eCos, the Embedded Configurable Operating System.
// Copyright (C) 1998, 1999, 2000, 2001, 2002, 2003 Red Hat, Inc.
//
// eCos is free software; you can redistribute it and/or modify it under
// the terms of the GNU General Public License as published by the Free
// Software Foundation; either version 2 or (at your option) any later version.
//
// eCos is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or
// FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
// for more details.
//
// You should have received a copy of the GNU General Public License along
// with eCos; if not, write to the Free Software Foundation, Inc.,
// 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.
//
// As a special exception, if other files instantiate templates or use macros
// or inline functions from this file, or you compile this file and link it
// with other works to produce a work based on this file, this file does not
// by itself cause the resulting work to be covered by the GNU General Public
// License. However the source code for this file must still be made available
// in accordance with section (3) of the GNU General Public License.
//
// This exception does not invalidate any other reasons why a work based on
// this file might be covered by the GNU General Public License.
//
// Alternative licenses for eCos may be arranged by contacting Red Hat, Inc.
// at http://sources.redhat.com/ecos/ecos-license/
// -------------------------------------------
//####ECOSGPLCOPYRIGHTEND####
//==========================================================================
//#####DESCRIPTIONBEGIN####
//
// Author(s): msalter
// Contributors: msalter
// Date: 2002-12-08
// Purpose: HAL board support
// Description: Implementations of HAL board interfaces
//
//####DESCRIPTIONEND####
//
//========================================================================*/
#include <pkgconf/hal.h>
#include <pkgconf/system.h>
#include CYGBLD_HAL_PLATFORM_H
#include CYGHWR_MEMORY_LAYOUT_H
#include <cyg/infra/cyg_type.h> // base types
#include <cyg/infra/cyg_trac.h> // tracing macros
#include <cyg/infra/cyg_ass.h> // assertion macros
#include <cyg/hal/hal_io.h> // IO macros
#include <cyg/hal/hal_stub.h> // Stub macros
#include <cyg/hal/hal_if.h> // calling interface API
#include <cyg/hal/hal_arch.h> // Register state info
#include <cyg/hal/hal_diag.h>
#include <cyg/hal/hal_intr.h> // Interrupt names
#include <cyg/hal/hal_cache.h>
#include <cyg/hal/plf_io.h>
#include <cyg/infra/diag.h> // diag_printf
#include <cyg/hal/drv_api.h> // CYG_ISR_HANDLED
// Most initialization has already been done before we get here.
// All we do here is set up the interrupt environment.
// FIXME: some of the stuff in hal_platform_setup could be moved here.
externC void plf_hardware_init(void);
void
hal_hardware_init(void)
{
hal_xscale_core_init();
// all interrupt sources to IRQ and disabled
*IXP425_INTR_SEL = 0;
*IXP425_INTR_EN = 0;
// Enable caches
HAL_DCACHE_ENABLE();
HAL_ICACHE_ENABLE();
// Let the timer run at a default rate (for delays)
hal_clock_initialize(CYGNUM_HAL_RTC_PERIOD);
// Set up eCos/ROM interfaces
hal_if_init();
// Perform any platform specific initializations
plf_hardware_init();
#ifdef CYGPKG_IO_PCI
cyg_hal_plf_pci_init();
#endif
}
// -------------------------------------------------------------------------
// This routine is called to respond to a hardware interrupt (IRQ). It
// should interrogate the hardware and return the IRQ vector number.
int
hal_IRQ_handler(void)
{
cyg_uint32 sources;
int index;
sources = *IXP425_INTR_IRQ_ST;
if (sources) {
HAL_LSBIT_INDEX(index, sources);
return index;
}
sources = *IXP425_INTR_FIQ_ST;
if (sources) {
HAL_LSBIT_INDEX(index, sources);
return index;
}
return CYGNUM_HAL_INTERRUPT_NONE; // This shouldn't happen!
}
void
hal_interrupt_mask(int vector)
{
unsigned val;
if (vector < CYGNUM_HAL_ISR_MIN || CYGNUM_HAL_ISR_MAX < vector)
return;
#if CYGNUM_HAL_ISR_MAX > CYGNUM_HAL_VAR_ISR_MAX
if (vector > CYGNUM_HAL_VAR_ISR_MAX) {
HAL_PLF_INTERRUPT_MASK(vector);
return;
}
#endif
val = *IXP425_INTR_EN & ~(1 << vector);
// If unmasking NPE interrupt, also unmask QM1 which is
// shared by all NPE ports.
if (vector == CYGNUM_HAL_INTERRUPT_NPEB ||
vector == CYGNUM_HAL_INTERRUPT_NPEC) {
if (!(val & (CYGNUM_HAL_INTERRUPT_NPEB | CYGNUM_HAL_INTERRUPT_NPEC)))
val &= ~(1 << CYGNUM_HAL_INTERRUPT_QM1);
}
*IXP425_INTR_EN = val;
}
void
hal_interrupt_unmask(int vector)
{
unsigned val;
if (vector < CYGNUM_HAL_ISR_MIN || CYGNUM_HAL_ISR_MAX < vector)
return;
#if CYGNUM_HAL_ISR_MAX > CYGNUM_HAL_VAR_ISR_MAX
if (vector > CYGNUM_HAL_VAR_ISR_MAX) {
HAL_PLF_INTERRUPT_UNMASK(vector);
return;
}
#endif
val = *IXP425_INTR_EN | (1 << vector);
// If all NPE interrupts are masked, also mask QM1 which is
// shared by all NPE ports.
if (vector == CYGNUM_HAL_INTERRUPT_NPEB ||
vector == CYGNUM_HAL_INTERRUPT_NPEC) {
val |= (1 << CYGNUM_HAL_INTERRUPT_QM1);
}
*IXP425_INTR_EN = val;
}
void
hal_interrupt_acknowledge(int vector)
{
if (vector < CYGNUM_HAL_ISR_MIN || CYGNUM_HAL_ISR_MAX < vector)
return;
#if CYGNUM_HAL_ISR_MAX > CYGNUM_HAL_VAR_ISR_MAX
if (vector > CYGNUM_HAL_VAR_ISR_MAX) {
HAL_PLF_INTERRUPT_ACKNOWLEDGE(vector);
return;
}
#endif
if (vector == CYGNUM_HAL_INTERRUPT_GPIO0 ||
vector == CYGNUM_HAL_INTERRUPT_GPIO1) {
*IXP425_GPISR = 1 << (vector - CYGNUM_HAL_INTERRUPT_GPIO0);
return;
}
if (vector >= CYGNUM_HAL_INTERRUPT_GPIO2 &&
vector <= CYGNUM_HAL_INTERRUPT_GPIO12) {
*IXP425_GPISR = 4 << (vector - CYGNUM_HAL_INTERRUPT_GPIO2);
return;
}
}
// This function is used to configure the GPIO interrupts (and possibly
// some platform-specific interrupts). All of the GPIO pins can potentially
// generate an interrupt.
// GPIO interrupts are configured as:
//
// level up interrupt on
// ----- -- ------------
// 0 0 Falling Edge
// 0 1 Rising Edge
// 0 -1 Either Edge
// 1 0 Low level
// 1 1 High level
//
void
hal_interrupt_configure(int vector, int level, int up)
{
int shift, ival = 0;
if (vector < CYGNUM_HAL_ISR_MIN || CYGNUM_HAL_ISR_MAX < vector)
return;
#if CYGNUM_HAL_ISR_MAX > CYGNUM_HAL_VAR_ISR_MAX
if (vector > CYGNUM_HAL_VAR_ISR_MAX) {
HAL_PLF_INTERRUPT_CONFIGURE(vector, level, up);
return;
}
#endif
if (level) {
ival = up ? 0 : 1 ;
} else {
if (up == 0)
ival = 3;
else if (up == 1)
ival = 2;
else if (up == -1)
ival = 4;
}
if (vector == CYGNUM_HAL_INTERRUPT_GPIO0 ||
vector == CYGNUM_HAL_INTERRUPT_GPIO1) {
vector -= CYGNUM_HAL_INTERRUPT_GPIO0;
shift = vector * 3;
*IXP425_GPIT1R = (*IXP425_GPIT1R & ~(7 << shift)) | (ival << shift);
*IXP425_GPISR |= (1 << vector);
return;
}
if (vector >= CYGNUM_HAL_INTERRUPT_GPIO2 &&
vector <= CYGNUM_HAL_INTERRUPT_GPIO7) {
vector = vector - CYGNUM_HAL_INTERRUPT_GPIO2 + 2;
shift = vector * 3;
*IXP425_GPIT1R = (*IXP425_GPIT1R & ~(7 << shift)) | (ival << shift);
*IXP425_GPISR |= (1 << vector);
return;
}
if (vector >= CYGNUM_HAL_INTERRUPT_GPIO8 &&
vector <= CYGNUM_HAL_INTERRUPT_GPIO12) {
vector -= CYGNUM_HAL_INTERRUPT_GPIO8;
shift = vector * 3;
*IXP425_GPIT2R = (*IXP425_GPIT2R & ~(7 << shift)) | (ival << shift);
*IXP425_GPISR |= (1 << vector);
return;
}
}
// Should do something with priority here.
void
hal_interrupt_set_level(int vector, int level)
{
}
/*------------------------------------------------------------------------*/
// RTC Support
static cyg_uint32 _period;
#define CLOCK_MULTIPLIER 66
void
hal_clock_initialize(cyg_uint32 period)
{
cyg_uint32 tmr_period;
_period = period;
tmr_period = (period * CLOCK_MULTIPLIER) & OST_TIM_RL_MASK;
// clear pending interrupt
*IXP425_OST_STS = OST_STS_T0INT;
// set reload value and enable
*IXP425_OST_TIM0_RL = tmr_period | OST_TIM_RL_ENABLE;
}
// Dynamically set the timer interrupt rate.
// Not for eCos application use at all, just special GPROF code in RedBoot.
void
hal_clock_reinitialize( int *pfreq, /* inout */
unsigned int *pperiod, /* inout */
unsigned int old_hz ) /* in */
{
unsigned int newp = 0, period, i = 0;
int hz;
int do_set_hw;
// Arbitrary choice somewhat - so the CPU can make
// progress with the clock set like this, we hope.
#define MIN_TICKS (2000)
#define MAX_TICKS N/A: 32-bit counter
if ( ! pfreq || ! pperiod )
return; // we cannot even report a problem!
hz = *pfreq;
period = *pperiod;
// Requested HZ:
// 0 => tell me the current value (no change, implemented in caller)
// - 1 => tell me the slowest (no change)
// - 2 => tell me the default (no change, implemented in caller)
// -nnn => tell me what you would choose for nnn (no change)
// MIN_INT => tell me the fastest (no change)
//
// 1 => tell me the slowest (sets the clock)
// MAX_INT => tell me the fastest (sets the clock)
do_set_hw = (hz > 0);
if ( hz < 0 )
hz = -hz;
// Be paranoid about bad args, and very defensive about underflows
if ( 0 < hz && 0 < period && 0 < old_hz ) {
newp = period * old_hz / (unsigned)hz;
if ( newp < MIN_TICKS ) {
newp = MIN_TICKS;
// recalculate to get the exact delay for this integral hz
// and hunt hz down to an acceptable value if necessary
i = period * old_hz / newp;
if ( i ) do {
newp = period * old_hz / i;
i--;
} while (newp < MIN_TICKS && i);
}
// So long as period * old_hz fits in 32 bits, there is no need to
// worry about overflow; hz >= 1 in the initial divide. If the
// clock cannot do a whole second (period * old_hz >= 2^32), we
// will get overflow here, and random returned HZ values.
// Recalculate the actual value installed.
i = period * old_hz / newp;
}
*pfreq = i;
*pperiod = newp;
if ( do_set_hw ) {
hal_clock_initialize( newp );
}
}
// This routine is called during a clock interrupt.
void
hal_clock_reset(cyg_uint32 vector, cyg_uint32 period)
{
// clear pending interrupt
*IXP425_OST_STS = OST_STS_T0INT;
}
// Read the current value of the clock, returning the number of hardware
// "ticks" that have occurred (i.e. how far away the current value is from
// the start)
void
hal_clock_read(cyg_uint32 *pvalue)
{
cyg_uint32 timer_val;
// Translate timer value back into microseconds
timer_val = *IXP425_OST_TIM0 / CLOCK_MULTIPLIER;
*pvalue = _period - timer_val;
}
// Delay for some usecs.
void
hal_delay_us(cyg_int32 delay)
{
#define _TICKS_PER_USEC CLOCK_MULTIPLIER
cyg_uint32 now, prev, diff, usecs;
cyg_uint32 tmr_period = _period * CLOCK_MULTIPLIER;
diff = usecs = 0;
prev = *IXP425_OST_TIM0;
while (delay > usecs) {
now = *IXP425_OST_TIM0;
if (prev < now)
diff += (prev + (tmr_period - now));
else
diff += (prev - now);
prev = now;
if (diff >= _TICKS_PER_USEC) {
usecs += (diff / _TICKS_PER_USEC);
diff %= _TICKS_PER_USEC;
}
}
}
/*------------------------------------------------------------------------*/
// EOF ixp425_misc.c
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -