📄 hal_intr.h
字号:
#define HAL_DISABLE_INTERRUPTS(_old_) \
CYG_MACRO_START \
register int x ; \
asm volatile ("st r1, @-r15 ;\n" \
"MOV PS, r1 ;\n" \
"LDI:8 #0x10,%0 ;\n" \
"AND r1, %0 ;\n" \
"LSR #1,%0 ;\n" \
"ld @r15+, r1 ;\n" \
"ANDCCR #0xEF \n" \
: "=r" (x) \
); \
(_old_) = (x); \
CYG_MACRO_END
#define HAL_RESTORE_INTERRUPTS(_old_) \
CYG_MACRO_START \
register int x = _old_; \
asm volatile ( "CMP #8, %0 ;\n" \
"BEQ 0f ;\n" \
"ANDCCR #0xEF ;\n" \
"BRA 1f;\n" \
"0:\n" \
"ORCCR #0x10 ;\n" \
"1:\n" \
: /* No outputs */ \
: "r"(x) \
); \
CYG_MACRO_END
// 5th bit (0x10 / #10H) is interrupt flag
// it is shifted right to be able to work with 4 bit immediate in the other macros
#define HAL_QUERY_INTERRUPTS(_old_) \
CYG_MACRO_START \
register int x ; \
asm volatile ("MOV PS,__tmp_reg__ ;\n" \
"LDI:8 #10H,%0 ;\n" \
"AND __tmp_reg__,%0 ;\n" \
"LSR #1,%0 ;\n" \
: "=r" (x) \
); \
(_old_) = (x); \
CYG_MACRO_END
//---------------------------------------------------------------------------
// Interrupt and VSR attachment macros
#define HAL_INTERRUPT_IN_USE( _vector_, _state_) \
CYG_MACRO_START \
cyg_uint32 _index_; \
HAL_TRANSLATE_VECTOR ((_vector_), _index_); \
\
if (hal_interrupt_handlers[_index_] \
==(CYG_ADDRESS)HAL_DEFAULT_ISR) \
(_state_) = 0; \
else \
(_state_) = 1; \
CYG_MACRO_END
#ifndef HAL_INTERRUPT_ATTACH
externC void __default_interrupt_vsr(void);
#define HAL_INTERRUPT_ATTACH( _vector_, _isr_, _data_, _object_ ) \
CYG_MACRO_START \
cyg_uint32 _index_; \
HAL_TRANSLATE_VECTOR((_vector_), _index_); \
\
HAL_VSR_SET( _vector_, &__default_interrupt_vsr , NULL); \
if( hal_interrupt_handlers[_index_] == (CYG_ADDRESS)HAL_DEFAULT_ISR ) \
{ \
hal_interrupt_handlers[_index_] = (CYG_ADDRESS)(_isr_); \
hal_interrupt_data[_index_] = (CYG_ADDRWORD)(_data_); \
hal_interrupt_objects[_index_] = (CYG_ADDRESS)(_object_); \
} \
CYG_MACRO_END
#endif /* HAL_INTERRUPT_ATTACH */
#define HAL_INTERRUPT_DETACH( _vector_, _isr_ ) \
CYG_MACRO_START \
cyg_uint32 _index_; \
HAL_TRANSLATE_VECTOR((_vector_), _index_); \
\
if (hal_interrupt_handlers[_index_] \
== (CYG_ADDRESS)(_isr_)) \
{ \
hal_interrupt_handlers[_index_] = \
(CYG_ADDRESS)HAL_DEFAULT_ISR; \
hal_interrupt_data[_index_] = 0; \
hal_interrupt_objects[_index_] = 0; \
} \
CYG_MACRO_END
#define HAL_VSR_GET( _vector_, _pvsr_ ) \
*((CYG_ADDRESS *)(_pvsr_)) = hal_vsr_table[(_vector_)];
#define HAL_VSR_SET( _vector_, _vsr_, _poldvsr_ ) \
CYG_MACRO_START \
CYG_ADDRESS *__poldvsr = (CYG_ADDRESS *)(_poldvsr_); \
if( __poldvsr != NULL ) \
*__poldvsr = hal_vsr_table[(_vector_)]; \
hal_vsr_table[(_vector_)] = (CYG_ADDRESS)(_vsr_); \
CYG_MACRO_END
// This is an ugly name, but what it means is: grab the VSR back to eCos
// internal handling, or if you like, the default handler. But if
// cooperating with GDB and CygMon, the default behaviour is to pass most
// exceptions to CygMon. This macro undoes that so that eCos handles the
// exception. So use it with care.
externC void __default_exception_vsr(void);
externC void __default_interrupt_vsr(void);
#define HAL_VSR_SET_TO_ECOS_HANDLER( _vector_, _poldvsr_ ) \
CYG_MACRO_START \
HAL_VSR_SET( _vector_, _vector_ > CYGNUM_HAL_EXCEPTION_MAX \
? (CYG_ADDRESS)__default_interrupt_vsr \
: (CYG_ADDRESS)__default_exception_vsr, \
_poldvsr_ ); \
CYG_MACRO_END
//--------------------------------------------------------------------------
// Vector translation.
// For chained interrupts we only have a single vector though which all
// are passed. For unchained interrupts we have a vector per interrupt.
#ifndef HAL_TRANSLATE_VECTOR
#if defined(CYGIMP_HAL_COMMON_INTERRUPTS_CHAIN)
#define HAL_TRANSLATE_VECTOR(_vector_,_index_) (_index_) = 0
#else
#define HAL_TRANSLATE_VECTOR(_vector_,_index_) (_index_) = (_vector_)
#endif
#endif
//--------------------------------------------------------------------------
// Clock control.
// This code uses the 16 bit reload timer 1. The defines are used to specify
// the IO adress of the registers, that are different in FR30 variants.
#ifndef CYGHWR_HAL_CLOCK_CONTROL_DEFINED
extern CYG_WORD32 cyg_hal_clock_period;
#define CYGHWR_HAL_CLOCK_PERIOD_DEFINED
#define HAL_CLOCK_INITIALIZE( _period_ ) \
CYG_MACRO_START \
HAL_WRITE_UINT16( CYG_HAL_FR30_RTC_TMRLR , _period_); \
HAL_WRITE_UINT16( CYG_HAL_FR30_RTC_TMCSR , 0x081b); \
cyg_hal_clock_period = _period_; \
CYG_MACRO_END
// This clears the interrupt request for reload timer 1 (RTC)
#define HAL_CLOCK_RESET( _vector_, _period_ ) \
CYG_MACRO_START \
asm volatile("ldi:8 #0x57, r0;\n" \
"bandl #0xb, @r0;\n" \
: : :"r0"); \
CYG_MACRO_END
#define HAL_CLOCK_READ( _pvalue_ ) \
CYG_MACRO_START \
CYG_FAIL("clock_read"); \
register CYG_WORD32 result; \
HAL_READ_UINT16( CYG_HAL_FR30_RTC_TMR, result); \
*(_pvalue_) = cyg_hal_clock_period - result; \
CYG_MACRO_END
#define CYGHWR_HAL_CLOCK_CONTROL_DEFINED
#endif
#if defined(CYGVAR_KERNEL_COUNTERS_CLOCK_LATENCY) && \
!defined(HAL_CLOCK_LATENCY)
#define HAL_CLOCK_LATENCY( _pvalue_ ) \
CYG_MACRO_START \
register CYG_WORD32 _cval_; \
HAL_CLOCK_READ(&_cval_); \
*(_pvalue_) = _cval_ - cyg_hal_clock_period; \
CYG_MACRO_END
#endif
//----------------------------------------------------------------------------
// Reset
// this clears BIT4 in STCR(0x481), which should issue a reset
#define HAL_PLATFORM_RESET() \
asm volatile ( \
"ldi:20 #0x481, r0;\n" \
"bandh #1, @r0;\n" \
: : :"r0");
externC void _start(void);
#define HAL_PLATFORM_RESET_ENTRY (&_start)
//--------------------------------------------------------------------------
// Microsecond delay
// This uses reload timer 2, because timer 0 and 1 can cause DMA transfers.
// Timer 2 is only used for delay service. We maybe support it out of the
// scheduler clock in the future.
externC void hal_delay_us(cyg_int32 usecs);
#define HAL_DELAY_US(_millis_) hal_delay_us(_millis_);
//---------------------------------------------------------------------------
#endif // ifndef CYGONCE_HAL_HAL_INTR_H
// End of hal_intr.h
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -