📄 plf_serial.c
字号:
//=============================================================================
//
// plf_stub.c
//
// Platform specific code for GDB stub support.
//
//=============================================================================
//####ECOSGPLCOPYRIGHTBEGIN####
// -------------------------------------------
// This file is part of eCos, the Embedded Configurable Operating System.
// Copyright (C) 1998, 1999, 2000, 2001, 2002 Red Hat, Inc.
//
// eCos is free software; you can redistribute it and/or modify it under
// the terms of the GNU General Public License as published by the Free
// Software Foundation; either version 2 or (at your option) any later version.
//
// eCos is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or
// FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
// for more details.
//
// You should have received a copy of the GNU General Public License along
// with eCos; if not, write to the Free Software Foundation, Inc.,
// 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.
//
// As a special exception, if other files instantiate templates or use macros
// or inline functions from this file, or you compile this file and link it
// with other works to produce a work based on this file, this file does not
// by itself cause the resulting work to be covered by the GNU General Public
// License. However the source code for this file must still be made available
// in accordance with section (3) of the GNU General Public License.
//
// This exception does not invalidate any other reasons why a work based on
// this file might be covered by the GNU General Public License.
//
// Alternative licenses for eCos may be arranged by contacting Red Hat, Inc.
// at http://sources.redhat.com/ecos/ecos-license/
// -------------------------------------------
//####ECOSGPLCOPYRIGHTEND####
//=============================================================================
//#####DESCRIPTIONBEGIN####
//
// Author(s): nickg, jskov (based on the old tx39 hal_stub.c)
// Contributors:nickg, jskov
// Date: 1999-02-12
// Purpose: Platform specific code for GDB stub support.
//
//####DESCRIPTIONEND####
//
//=============================================================================
#include <pkgconf/hal.h>
#include <cyg/hal/hal_io.h> // HAL IO macros
#include <cyg/hal/hal_diag.h> // diag output. FIXME
#include <cyg/hal/hal_arch.h>
#include <cyg/hal/hal_intr.h>
#include <cyg/hal/hal_if.h>
#include <cyg/hal/hal_misc.h>
#include <cyg/hal/drv_api.h> // CYG_ISR_HANDLED
#include <cyg/hal/plf_z8530.h>
/*---------------------------------------------------------------------------*/
static unsigned char _diag_init[] = {
0x00, /* Register 0 */
0x00, /* Register 1 - no interrupts */
0x00, /* Register 2 */
0xC1, /* Register 3 - Rx enable, 8 data */
0x44, /* Register 4 - x16 clock, 1 stop, no parity */
0x68, /* Register 5 - Tx enable, 8 data */
0x00, /* Register 6 */
0x00, /* Register 7 */
0x00, /* Register 8 */
0x00, /* Register 9 */
0x00, /* Register 10 */
0x56, /* Register 11 - Rx, Tx clocks from baud rate generator */
0x00, /* Register 12 - baud rate LSB */
0x00, /* Register 13 - baud rate MSB */
0x03, /* Register 14 - enable baud rate generator */
0x00 /* Register 15 */
};
#define BRTC(brate) (( ((unsigned) DUART_CLOCK) / (2*(brate)*SCC_CLKMODE_TC)) - 2)
#define DUART_CLOCK 4915200 /* Z8530 duart */
#define SCC_CLKMODE_TC 16 /* Always run x16 clock for async modes */
//-----------------------------------------------------------------------------
typedef struct {
cyg_uint32 base;
cyg_uint32 msec_timeout;
int isr_vector;
} channel_data_t;
static channel_data_t channels[2] = {
{ DUART_A, 1000, CYGNUM_HAL_INTERRUPT_DUART},
{ DUART_B, 1000, CYGNUM_HAL_INTERRUPT_DUART}
};
//-----------------------------------------------------------------------------
// Set the baud rate
static void
cyg_hal_plf_serial_set_baud(cyg_uint32 duart, cyg_uint16 baud_rate)
{
unsigned short brg = BRTC(baud_rate);
HAL_DUART_WRITE_CR(duart, 12, brg&0xFF);
HAL_DUART_WRITE_CR(duart, 13, brg>>8);
}
//-----------------------------------------------------------------------------
// The minimal init, get and put functions. All by polling.
void
cyg_hal_plf_serial_init_channel(void* __ch_data)
{
cyg_uint32 duart;
unsigned short brg = BRTC(CYGNUM_HAL_VIRTUAL_VECTOR_CONSOLE_CHANNEL_BAUD);
int i;
channel_data_t *chan;
// Some of the diagnostic print code calls through here with no idea what the ch_data is.
// Go ahead and assume it is channels[0].
if (__ch_data == 0)
__ch_data = (void*)&channels[0];
chan = (channel_data_t*)__ch_data;
#ifdef CYGPRI_HAL_VIRTUAL_VECTOR_DEBUG_CHANNEL_CONFIGURABLE
if( (chan-&channels[0]) == CYGNUM_HAL_VIRTUAL_VECTOR_DEBUG_CHANNEL )
brg = BRTC(CYGNUM_HAL_VIRTUAL_VECTOR_DEBUG_CHANNEL_BAUD);
#endif
#ifdef CYGPRI_HAL_VIRTUAL_VECTOR_CONSOLE_CHANNEL_CONFIGURABLE
if( (chan-&channels[0]) == CYGNUM_HAL_VIRTUAL_VECTOR_CONSOLE_CHANNEL )
brg = BRTC(CYGNUM_HAL_VIRTUAL_VECTOR_CONSOLE_CHANNEL_BAUD);
#endif
duart = chan->base;
_diag_init[12] = brg & 0xFF;
_diag_init[13] = brg >> 8;
for (i = 1; i < 16; i++) {
HAL_DUART_WRITE_CR(duart, i, _diag_init[i]);
}
}
void
cyg_hal_plf_serial_putc(void* __ch_data, cyg_uint8 __ch)
{
cyg_uint32 duart;
cyg_uint8 rr0;
// Some of the diagnostic print code calls through here with no idea what the ch_data is.
// Go ahead and assume it is channels[0].
if (__ch_data == 0)
__ch_data = (void*)&channels[0];
duart = ((channel_data_t*)__ch_data)->base;
CYGARC_HAL_SAVE_GP();
do
{
HAL_DUART_READ_CR(duart, 0, rr0 );
} while( (rr0 & 0x04) == 0 );
HAL_DUART_WRITE_TR( duart, __ch );
HAL_INTERRUPT_ACKNOWLEDGE( CYGNUM_HAL_INTERRUPT_DUART );
CYGARC_HAL_RESTORE_GP();
}
static cyg_bool
cyg_hal_plf_serial_getc_nonblock(void* __ch_data, cyg_uint8* ch)
{
cyg_uint32 duart;
cyg_uint8 rr0;
// Some of the diagnostic print code calls through here with no idea what the ch_data is.
// Go ahead and assume it is channels[0].
if (__ch_data == 0)
__ch_data = (void*)&channels[0];
duart = ((channel_data_t*)__ch_data)->base;
HAL_DUART_READ_CR(duart, 0, rr0 );
if( (rr0 & 0x01) == 0 )
return false;
HAL_DUART_READ_RR( duart, *ch );
HAL_INTERRUPT_ACKNOWLEDGE( CYGNUM_HAL_INTERRUPT_DUART );
return true;
}
cyg_uint8
cyg_hal_plf_serial_getc(void* __ch_data)
{
cyg_uint8 ch;
CYGARC_HAL_SAVE_GP();
// Some of the diagnostic print code calls through here with no idea what the ch_data is.
// Go ahead and assume it is channels[0].
if (__ch_data == 0)
__ch_data = (void*)&channels[0];
while(!cyg_hal_plf_serial_getc_nonblock(__ch_data, &ch));
CYGARC_HAL_RESTORE_GP();
return ch;
}
#ifdef CYGSEM_HAL_VIRTUAL_VECTOR_SUPPORT
static void
cyg_hal_plf_serial_write(void* __ch_data, const cyg_uint8* __buf,
cyg_uint32 __len)
{
CYGARC_HAL_SAVE_GP();
// Some of the diagnostic print code calls through here with no idea what the ch_data is.
// Go ahead and assume it is channels[0].
if (__ch_data == 0)
__ch_data = (void*)&channels[0];
while(__len-- > 0)
cyg_hal_plf_serial_putc(__ch_data, *__buf++);
CYGARC_HAL_RESTORE_GP();
}
static void
cyg_hal_plf_serial_read(void* __ch_data, cyg_uint8* __buf, cyg_uint32 __len)
{
CYGARC_HAL_SAVE_GP();
// Some of the diagnostic print code calls through here with no idea what the ch_data is.
// Go ahead and assume it is channels[0].
if (__ch_data == 0)
__ch_data = (void*)&channels[0];
while(__len-- > 0)
*__buf++ = cyg_hal_plf_serial_getc(__ch_data);
CYGARC_HAL_RESTORE_GP();
}
cyg_bool
cyg_hal_plf_serial_getc_timeout(void* __ch_data, cyg_uint8* ch)
{
int delay_count;
channel_data_t* chan;
cyg_bool res;
CYGARC_HAL_SAVE_GP();
// Some of the diagnostic print code calls through here with no idea what the ch_data is.
// Go ahead and assume it is channels[0].
if (__ch_data == 0)
__ch_data = (void*)&channels[0];
chan = (channel_data_t*)__ch_data;
delay_count = chan->msec_timeout * 10; // delay in .1 ms steps
for(;;) {
res = cyg_hal_plf_serial_getc_nonblock(__ch_data, ch);
if (res || 0 == delay_count--)
break;
CYGACC_CALL_IF_DELAY_US(100);
}
CYGARC_HAL_RESTORE_GP();
return res;
}
static int
cyg_hal_plf_serial_control(void *__ch_data, __comm_control_cmd_t __func, ...)
{
static int irq_state = 0;
channel_data_t* chan;
int ret = 0;
CYGARC_HAL_SAVE_GP();
// Some of the diagnostic print code calls through here with no idea what the ch_data is.
// Go ahead and assume it is channels[0].
if (__ch_data == 0)
__ch_data = (void*)&channels[0];
chan = (channel_data_t*)__ch_data;
switch (__func) {
case __COMMCTL_IRQ_ENABLE:
irq_state = 1;
HAL_DUART_WRITE_CR( chan->base, 1, 0x10 );
HAL_DUART_WRITE_CR( chan->base, 9, 0x0a );
HAL_INTERRUPT_SET_LEVEL(chan->isr_vector, 0);
HAL_INTERRUPT_UNMASK(chan->isr_vector);
break;
case __COMMCTL_IRQ_DISABLE:
ret = irq_state;
irq_state = 0;
HAL_DUART_WRITE_CR( chan->base, 1, 0x00 );
HAL_DUART_WRITE_CR( chan->base, 9, 0x00 );
HAL_INTERRUPT_MASK(chan->isr_vector);
break;
case __COMMCTL_DBG_ISR_VECTOR:
ret = chan->isr_vector;
break;
case __COMMCTL_SET_TIMEOUT:
{
va_list ap;
va_start(ap, __func);
ret = chan->msec_timeout;
chan->msec_timeout = va_arg(ap, cyg_uint32);
va_end(ap);
}
break;
case __COMMCTL_SETBAUD:
{
cyg_uint32 baud_rate;
cyg_uint32 duart = chan->base;
va_list ap;
va_start(ap, __func);
baud_rate = va_arg(ap, cyg_uint32);
va_end(ap);
// Set baud rate.
cyg_hal_plf_serial_set_baud(duart, baud_rate);
}
break;
case __COMMCTL_GETBAUD:
break;
default:
break;
}
CYGARC_HAL_RESTORE_GP();
return ret;
}
static int
cyg_hal_plf_serial_isr(void *__ch_data, int* __ctrlc,
CYG_ADDRWORD __vector, CYG_ADDRWORD __data)
{
int res = 0;
channel_data_t* chan;
char c;
CYGARC_HAL_SAVE_GP();
// Some of the diagnostic print code calls through here with no idea what the ch_data is.
// Go ahead and assume it is channels[0].
if (__ch_data == 0)
__ch_data = (void*)&channels[0];
chan = (channel_data_t*)__ch_data;
HAL_INTERRUPT_ACKNOWLEDGE(chan->isr_vector);
*__ctrlc = 0;
if ( cyg_hal_plf_serial_getc_nonblock(__ch_data, &c) )
{
if( cyg_hal_is_break( &c , 1 ) )
*__ctrlc = 1;
res = CYG_ISR_HANDLED;
}
CYGARC_HAL_RESTORE_GP();
return res;
}
#endif
static void
cyg_hal_plf_serial_init(void)
{
#ifdef CYGSEM_HAL_VIRTUAL_VECTOR_SUPPORT
hal_virtual_comm_table_t* comm;
int cur = CYGACC_CALL_IF_SET_CONSOLE_COMM(CYGNUM_CALL_IF_SET_COMM_ID_QUERY_CURRENT);
#endif
// Disable interrupts.
HAL_INTERRUPT_MASK(channels[0].isr_vector);
// Init channels
cyg_hal_plf_serial_init_channel((void*)&channels[0]);
#ifdef CYGSEM_HAL_VIRTUAL_VECTOR_SUPPORT
// Setup procs in the vector table
// Set channel 0
CYGACC_CALL_IF_SET_CONSOLE_COMM(0);
comm = CYGACC_CALL_IF_CONSOLE_PROCS();
CYGACC_COMM_IF_CH_DATA_SET(*comm, &channels[0]);
CYGACC_COMM_IF_WRITE_SET(*comm, cyg_hal_plf_serial_write);
CYGACC_COMM_IF_READ_SET(*comm, cyg_hal_plf_serial_read);
CYGACC_COMM_IF_PUTC_SET(*comm, cyg_hal_plf_serial_putc);
CYGACC_COMM_IF_GETC_SET(*comm, cyg_hal_plf_serial_getc);
CYGACC_COMM_IF_CONTROL_SET(*comm, cyg_hal_plf_serial_control);
CYGACC_COMM_IF_DBG_ISR_SET(*comm, cyg_hal_plf_serial_isr);
CYGACC_COMM_IF_GETC_TIMEOUT_SET(*comm, cyg_hal_plf_serial_getc_timeout);
// Restore original console
CYGACC_CALL_IF_SET_CONSOLE_COMM(cur);
#endif
}
void
cyg_hal_plf_comms_init(void)
{
static int initialized = 0;
if (initialized)
return;
initialized = 1;
cyg_hal_plf_serial_init();
}
//-----------------------------------------------------------------------------
// End of plf_serial.c
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -