⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 weaklearner_fast.m

📁 matlab最新统计模式识别工具箱
💻 M
字号:
function model = weaklearner_fast(data)% WEAKLEARNER Produce classifier thresholding single feature.%% Synopsis:%  model = weaklearner(data)%% Description:%  This function produce a weak binary classifier which assigns%  input vector x to classes [1,2] based on thresholding a single %  feature. The output is a model which defines the threshold %  and feature index such that the weighted error is minimized.%  This weak learner can be used with the AdaBoost classifier%  (see 'help adaboost') as a feature selection method.%  % Input:%  data [struct] Training data:%   .X [dim x num_data] Training vectors.%   .y [1 x num_data] Binary labels (1 or 2).%   .D [1 x num_data] Weights of training vectors (optional).%    If not given then D is set to be uniform distribution.% % Output:%  model [struct] Binary linear classifier:%   .W [dim x 1] Normal vector of hyperplane.%   .b [1x1] Bias of the hyperplane.%   .fun = 'linclass'.%% Example:%  help adaboost%% See also: %  ADABOOST, ADACLASS.% % About: Statistical Pattern Recognition Toolbox% (C) 1999-2004, Written by Vojtech Franc and Vaclav Hlavac% <a href="http://www.cvut.cz">Czech Technical University Prague</a>% <a href="http://www.feld.cvut.cz">Faculty of Electrical Engineering</a>% <a href="http://cmp.felk.cvut.cz">Center for Machine Perception</a>% Modifications:% 31-jan-2007, VF, careful handling the bias value% 01-dec-2006, SC, sharat@mit.edu; wrote fast version% 25-aug-2004, VF% 11-aug-2004, VF[dim,num_data] = size(data.X);if(~isfield(data,'D'))    data.D = ones(1,num_data)/num_data;end;W = zeros(dim,1);Errors = zeros(dim,1);for i=1:dim,  [x,idx] = sort(data.X(i,:));  y       = data.y(idx);  D       = data.D(idx);  Sp= zeros(1,num_data);  Sn= zeros(1,num_data);  Sp(y==1)      = D(y==1);  Sn(y==2)      = D(y==2);   Sp            = cumsum(Sp);   Sn            = cumsum(Sn);  Tp            = Sp(end);  Tn            = Sn(end);  err           = (Sp+Tn-Sn);  [minerr1,inx1]= min(err);  [minerr2,inx2] = min(Tp+Tn-err);  if minerr1 < minerr2,    W(i) = 1;    Errors(i) = minerr1;    if inx1 < num_data, b(i) = -(x(inx1)+x(inx1+1))*0.5; else b(i)=-(x(inx1)+1); end  else    W(i) = - 1;    Errors(i) = minerr2;    if inx2 < num_data,  b(i) = (x(inx2)+x(inx2+1))*0.5; else b(i) = x(inx2)+1; end  endend[dummy,inx] = min(Errors);model.W = zeros(dim,1);model.W(inx) = W(inx);model.b = b(inx);model.fun = 'linclass';model.dim = inx;y = linclass(data.X,model);%err = sum((y(:)~=data.y(:)).*data.D(:));return;

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -