📄 bsvm2.m
字号:
function model = bsvm2( data, options )% BSVM2 Multi-class BSVM with L2-soft margin.%% Synopsis:% model = bsvm2( data, options ) %% Description:% This function trains the multi-class SVM classifier based% on BSVM formulation (bias added to the objective function) and% L2-soft margin penalization of misclassifications.% The quadratic programming task is optimized by one of the% following algorithms:% mdm ... Mitchell-Demyanov-Malozemov% imdm ... Mitchell-Demyanov-Malozemov Improved 1.% iimdm ... Mitchell-Demyanov-Malozemov Improved 2.% kozinec ... Kozinec algorithm.% keerthi ... NPA algorithm by Keerthi et al.% kowalczyk ... Based on Kowalczyk's maximal margin perceptron.%% For more info refer to V.Franc: Optimization Algorithms for Kernel % Methods. Research report. CTU-CMP-2005-22. CTU FEL Prague. 2005.% ftp://cmp.felk.cvut.cz/pub/cmp/articles/franc/Franc-PhD.pdf .%% Input:% data [struct] Training data:% .X [dim x num_data] Training vectors.% .y [1 x num_data] Labels (1,2,...,nclass).%% options [struct] Control parameters:% .ker [string] Kernel identifier. See 'help kernel'.% .arg [1 x nargs] Kernel argument(s).% .C [1x1] Regularization constant.% .solver [string] Solver to be used: 'mdm', 'imdm' (default), 'iimdm', % 'kozinec', 'kowalczyk','keerthi'.% .tmax [1x1] Maximal number of iterations (default inf).% .tolabs [1x1] Absolute tolerance stopping condition (default 0.0).% .tolrel [1x1] Relative tolerance stopping condition (default 0.001).% .thlb [1x1] Thereshold on the lower bound (default inf).% .cache [1x1] Number of columns of kernel matrix to be cached (default 1000).% .verb [1x1] If > 0 then some info is printed (default 0).%% Output:% model [struct] Multi-class SVM classifier:% .Alpha [nsv x nclass] Weights.% .b [nclass x 1] Biases.% .sv.X [dim x nsv] Support vectors.% .nsv [1x1] Number of support vectors.% .options [struct] Copy of input options.% .t [1x1] Number of iterations.% .UB [1x1] Upper bound on the optimal solution.% .LB [1x1] Lower bound on the optimal solution.% .History [2 x (t+1)] UB and LB with respect to t.% .trnerr [1x1] Training classification error.% .kercnt [1x1] Number of kernel evaluations.% .cputime [1x1] CPU time (measured by tic-toc).% .stat [struct] Statistics about optimization:% .access [1x1] Number of requested columns of matrix H.% .t [1x1] Number of iterations.% .UB [1x1] Upper bound on the optimal value of criterion.% .LB [1x1] Lower bound on the optimal value of criterion.% .LB_History [1x(t+1)] LB with respect to t.% .UB_History [1x(t+1)] UB with respect to t.% .NA [1x1] Number of non-zero elements in solution.%% Example:% data = load('pentagon');% options = struct('ker','rbf','arg',1,'C',10);% model = bsvm2(data,options )% figure; % ppatterns(data); ppatterns(model.sv.X,'ok',12);% pboundary(model);%% See also % SVMCLASS, OAASVM, OAOSVM, GMNP.%% About: Statistical Pattern Recognition Toolbox% (C) 1999-2005, Written by Vojtech Franc and Vaclav Hlavac% <a href="http://www.cvut.cz">Czech Technical University Prague</a>% <a href="http://www.feld.cvut.cz">Faculty of Electrical Engineering</a>% <a href="http://cmp.felk.cvut.cz">Center for Machine Perception</a>% Modifications:% 09-sep-2005, VF% 24-jan-2005, VF% 29-nov-2004, VF% 26-nov-2004, VF% 16-Nov-2004, VF% 31-may-2004, VF% 23-jan-2003, VFtic;% process inputs %-------------------------------------------------------data=c2s(data);if nargin < 2, options=[]; else options=c2s(options); endif ~isfield(options,'ker'), options.ker='linear'; endif ~isfield(options,'arg'), options.arg=1; endif ~isfield(options,'C'), options.C=inf; endif ~isfield(options,'tmax'), options.tmax=inf; endif ~isfield(options,'tolabs'), options.tolabs=0; endif ~isfield(options,'tolrel'), options.tolrel=0.001; endif ~isfield(options,'thlb'), options.thlb=inf; endif ~isfield(options,'solver'), options.solver='imdm'; endif ~isfield(options,'cache'), options.cache = 1000; endif ~isfield(options,'verb'), options.verb=0; end[dim,num_data]=size(data.X);nclass = max(data.y);% display info%---------------------if options.verb > 0, fprintf('Binary rules: %d\n', nclass); fprintf('Training data: %d\n', num_data); fprintf('Dimension: %d\n', dim); if isfield( options, 'ker'), fprintf('Kernel: %s\n', options.ker); end if isfield( options, 'arg'), fprintf('arg: %f\n', options.arg(1)); end if isfield( options, 'C'), fprintf('C: %f\n', options.C); end fprintf('Solver: %s\n', options.solver);end% call MEX implementation[Alpha,b,exitflag,kercnt,access,trnerr,t,NA,UB,LB,History] = bsvm2_mex(... data.X,... data.y,... options.ker,... options.arg,... options.C,... options.solver,... options.tmax,... options.tolabs, ... options.tolrel,... options.thlb,... options.cache, ... options.verb );% set up model%-------------------------sv_inx = find( sum(abs(Alpha),1) ~= 0 );%sv_inx = find( sum(abs(Alpha),1) ~= inf );Alpha = Alpha(:,sv_inx)';for i = 1:size(Alpha,2), inx = find( data.y(sv_inx) ~= i); Alpha(inx,i) = -Alpha(inx,i);endmodel.Alpha = Alpha;model.b = b;model.sv.X = data.X(:,sv_inx);model.sv.y = data.y(sv_inx);model.sv.inx = sv_inx;model.nsv = length(sv_inx);model.options = options;model.exitflag = exitflag;model.trnerr = trnerr;model.kercnt = kercnt;model.stat.access = access;model.stat.t = t;model.stat.UB = UB;model.stat.LB = LB;model.stat.LB_History = History(1,:);model.stat.UB_History = History(2,:);model.stat.NA = NA;model.cputime = toc;if strcmpi('linear',options.ker) == 1, model.W = model.sv.X*model.Alpha; model.fun = 'linclass';else model.fun = 'svmclass';endreturn;% EOF
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -