📄 mlcgmm.html
字号:
<html><head> <meta HTTP-EQUIV="Content-Type" CONTENT="text/html;charset=ISO-8859-1"> <title>Contents.m</title><link rel="stylesheet" type="text/css" href="../../stpr.css"></head><body><table border=0 width="100%" cellpadding=0 cellspacing=0><tr valign="baseline"><td valign="baseline" class="function"><b class="function">MLCGMM</b><td valign="baseline" align="right" class="function"><a href="../../probab/estimation/index.html" target="mdsdir"><img border = 0 src="../../up.gif"></a></table> <p><b>Maximal Likelihood estimation of Gaussian mixture model.</b></p> <hr><div class='code'><code><span class=help> </span><br><span class=help> <span class=help_field>Synopsis:</span></span><br><span class=help> model = mlcgmm(X)</span><br><span class=help> model = mlcgmm(X,cov_type)</span><br><span class=help> model = mlcgmm(data)</span><br><span class=help> model = mlcgmm(data,cov_type)</span><br><span class=help> </span><br><span class=help> <span class=help_field>Description:</span></span><br><span class=help> It computes Maximum Likelihood estimation of parameters</span><br><span class=help> of Gaussian mixture model for given labeled data sample</span><br><span class=help> (complete data).</span><br><span class=help></span><br><span class=help> model = mlcgmm(X) computes parameters (model.Mean,model.Cov)</span><br><span class=help> of a single Gaussian distribution for given sample of column </span><br><span class=help> vectors X (all labels are assumed to be 1).</span><br><span class=help></span><br><span class=help> model = mlcgmm(X,cov_type) specifies shape of covariance matrix:</span><br><span class=help> cov_type = 'full' full covariance matrix (default)</span><br><span class=help> cov_type = 'diag' diagonal covarinace matrix</span><br><span class=help> cov_type = 'spherical' spherical covariance matrix</span><br><span class=help></span><br><span class=help> model = mlcgmm(data) computes parameters of a Gaussian mixture model</span><br><span class=help> from a given labeled data sample</span><br><span class=help> data.X ... samples,</span><br><span class=help> data.y .. labels.</span><br><span class=help> It estimates parameters of ncomp=max(data.y) Gaussians and</span><br><span class=help> a priory probabilities Prior [1 x ncomp] using Maximum-Likelihood </span><br><span class=help> principle.</span><br><span class=help></span><br><span class=help> <span class=help_field>Input:</span></span><br><span class=help> X [dim x num_data] Data sample.</span><br><span class=help> data.X [dim x num_data] Data sample.</span><br><span class=help> data.y [1 x num_data] Data labels.</span><br><span class=help> cov_type [string] Type of covariacne matrix (see above).</span><br><span class=help></span><br><span class=help> <span class=help_field>Output:</span></span><br><span class=help> model [struct] Estimated Gaussian mixture model:</span><br><span class=help> .Mean [dim x ncomp] Mean vectors.</span><br><span class=help> .Cov [dim x dim x ncomp] Covariance matrices.</span><br><span class=help> .Prior [1 x ncomp] Estimated a priory probabilities.</span><br><span class=help> </span><br><span class=help> <span class=help_field>Example:</span></span><br><span class=help> data = load('riply_trn');</span><br><span class=help> model = mlcgmm( data );</span><br><span class=help> figure; hold on; ppatterns(data); pgauss( model );</span><br><span class=help> figure; hold on; ppatterns(data); pgmm( model );</span><br><span class=help></span><br><span class=help> <span class=also_field>See also </span><span class=also></span><br><span class=help><span class=also> <a href = "../../probab/estimation/emgmm.html" target="mdsbody">EMGMM</a>, <a href = "../../probab/estimation/mmgauss.html" target="mdsbody">MMGAUSS</a>, <a href = "../../probab/pdfgmm.html" target="mdsbody">PDFGMM</a>.</span><br><span class=help></span><br></code></div> <hr> <b>Source:</b> <a href= "../../probab/estimation/list/mlcgmm.html">mlcgmm.m</a> <p><b class="info_field">About: </b> Statistical Pattern Recognition Toolbox<br> (C) 1999-2003, Written by Vojtech Franc and Vaclav Hlavac<br> <a href="http://www.cvut.cz">Czech Technical University Prague</a><br> <a href="http://www.feld.cvut.cz">Faculty of Electrical Engineering</a><br> <a href="http://cmp.felk.cvut.cz">Center for Machine Perception</a><br> <p><b class="info_field">Modifications: </b> <br> 17-aug-2004, VF, labels y do not have to form a sequence 1,2,...,max_y<br> 2-may-2004, VF<br> 29-apr-2004, VF<br> 19-sep-2003, VF<br> 27-feb-2003, VF<br></body></html>
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -