📄 pdfgmm.html
字号:
<html><head> <meta HTTP-EQUIV="Content-Type" CONTENT="text/html;charset=ISO-8859-1"> <title>pdfgmm.m</title><link rel="stylesheet" type="text/css" href="../../m-syntax.css"></head><body><code><span class=defun_kw>function</span> <span class=defun_out>y </span>= <span class=defun_name>pdfgmm</span>(<span class=defun_in>X, model </span>)<br><span class=h1>% PDFGMM Evaluates gaussian mixture model.</span><br><span class=help>%</span><br><span class=help>% <span class=help_field>Synopsis:</span></span><br><span class=help>% y = pdfgmm(X, model )</span><br><span class=help>%</span><br><span class=help>% <span class=help_field>Description:</span></span><br><span class=help>% This function evaluates a probability density function </span><br><span class=help>% determined by Gaussian mixture model (GMM) for given input column </span><br><span class=help>% vectors in X. The GMM is defined as</span><br><span class=help>% </span><br><span class=help>% y(i) = sum model.Prior(j)*pdfgauss(X(:,i),model.Mean(:,j),model.Cov(:,:,j))</span><br><span class=help>% j=1:ncomp</span><br><span class=help>%</span><br><span class=help>% for all i=1:size(X,2).</span><br><span class=help>% </span><br><span class=help>% <span class=help_field>Input:</span></span><br><span class=help>% X [dim x num_data] Input matrix of column vectors.</span><br><span class=help>% model.Mean [dim x ncomp] Means of Gaussians.</span><br><span class=help>% model.Cov [dim x dim x ncomp] Covarince matrices.</span><br><span class=help>% model.Prior [ncomp x 1] Weights of components.</span><br><span class=help>%</span><br><span class=help>% <span class=help_field>Output:</span></span><br><span class=help>% y [1 x num_data] Values of probability density function.</span><br><span class=help>%</span><br><span class=help>% <span class=help_field>Example:</span></span><br><span class=help>%</span><br><span class=help>% Univariate case</span><br><span class=help>% x = linspace(-5,5,100);</span><br><span class=help>% distrib = struct('Mean',[-2 3],'Cov',[1 0.5],'Prior',[0.4 0.6]);</span><br><span class=help>% y = pdfgmm(x,distrib);</span><br><span class=help>% figure; plot(x,y);</span><br><span class=help>%</span><br><span class=help>% Multivariate case</span><br><span class=help>% model.Mean(:,1) = [-1;-1]; model.Cov(:,:,1) = [1,0.5;0.5,1]; </span><br><span class=help>% model.Mean(:,2) = [1;1]; model.Cov(:,:,2) = [1,-0.5;-0.5,1]; </span><br><span class=help>% model.Prior = [0.4 0.6];</span><br><span class=help>% [Ax,Ay] = meshgrid(linspace(-5,5,100), linspace(-5,5,100));</span><br><span class=help>% y = pdfgmm([Ax(:)';Ay(:)'],model);</span><br><span class=help>% figure; surf( Ax, Ay, reshape(y,100,100)); shading interp;</span><br><span class=help>%</span><br><span class=help>% See also </span><br><span class=help>% GMMSAMP, PDFGAUSS.</span><br><span class=help>%</span><br><hr><span class=help1>% <span class=help1_field>About:</span> Statistical Pattern Recognition Toolbox</span><br><span class=help1>% (C) 1999-2003, Written by Vojtech Franc and Vaclav Hlavac</span><br><span class=help1>% <a href="http://www.cvut.cz">Czech Technical University Prague</a></span><br><span class=help1>% <a href="http://www.feld.cvut.cz">Faculty of Electrical Engineering</a></span><br><span class=help1>% <a href="http://cmp.felk.cvut.cz">Center for Machine Perception</a></span><br><br><span class=help1>% <span class=help1_field>Modifications:</span></span><br><span class=help1>% 28-apr-2004, VF</span><br><br><hr><span class=comment>% allows inputs to be given in cell array</span><br>model = c2s(model);<br><br>y = model.Prior(:)'*pdfgauss(X,model);<br><br><span class=jump>return</span>;<br></code>
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -