⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 chapter 12 assembly language programming -- valvano.htm

📁 介绍了在嵌入式系统中如何用c来设计嵌入式软件
💻 HTM
📖 第 1 页 / 共 2 页
字号:
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<!-- saved from url=(0058)http://www.ece.utexas.edu/~valvano/embed/chap12/chap12.htm -->
<HTML><HEAD><TITLE>Chapter 12: Assembly Language Programming -- Valvano</TITLE>
<META http-equiv=content-type content=text/html;charset=iso-8859-1>
<META content="MSHTML 5.50.3825.1300" name=GENERATOR>
<META 
content="StarMax HD:Microsoft Office 98:Templates:Web Pages:Blank Web Page" 
name=Template></HEAD>
<BODY vLink=#800080 link=#0000ff>
<P><!--Developing Embedded Software in C using ICC11/ICC12/Hiware by Jonathan W. Valvano--><B><FONT 
face="Times New Roman,Times" size=4>Chapter 12: Assembly Language 
Programming</FONT></B></P>
<P><B><I><FONT face=Helvetica,Arial>What's in Chapter 12?</FONT></I></B></P>
<DIR>
<P><A 
href="http://www.ece.utexas.edu/~valvano/embed/chap12/chap12.htm#INSERT">How to 
insert single assembly instructions</A><FONT face=Monaco><BR></FONT><A 
href="http://www.ece.utexas.edu/~valvano/embed/chap12/chap12.htm#MIXTURE">How to 
compile with a mixture of assembly and C files</A><FONT 
face=Monaco><BR></FONT><A 
href="http://www.ece.utexas.edu/~valvano/embed/chap12/chap12.htm#DIRECTIVES">Assembler 
Directives</A><A 
href="http://www.ece.utexas.edu/~valvano/embed/chap12/chap12.htm#OPTIMIZE"><BR>How 
to use assembly to optimize a C function</A></P></DIR>
<P><FONT face="Times New Roman,Times">One of the main reasons for using the C 
language is to achieve portability. But there are occasional situations in which 
it is necessary to sacrifice portability in order to gain full access to the 
operating system or to the hardware in order to perform some interface 
requirement. If these instances are kept to a minimum and are not replicated in 
many different programs, the negative effect on portability may be acceptable. 
There are two approaches to writing assembly language with ICC11 and ICC12. The 
first method inserts a single assembly instruction directly into a C function 
using the <B>asm("string");</B> feature. Everything within the <B>"string"</B> 
statement is assumed to be assembly language code and is sent straight to the 
output of the compiler exactly as it appears in the input. The second approach 
is to write an entire file in assembly language, which may include global 
variables and functions. Entire assembly files can be inserted into our C 
programs using the <B>asm(".include 'filename' ");</B> feature. Entire assembly 
files can also be assembled separately then linked at a later time to the rest 
of the programs. The simple insertion method is discussed in this 
chapter.</FONT></P>
<P><B><I><FONT face=Helvetica,Arial><A name=INSERT></A>How to insert single 
assembly instructions.</FONT></I></B></P>
<P><FONT face="Times New Roman,Times">To support this capability, C provides for 
assembly language instructions to be written into C programs anywhere a 
statement is valid. Since the compiler generates assembly language as output, 
when it encounters assembly language instructions in the input, it simply copies 
them directly to the output. </FONT></P>
<P><FONT face="Times New Roman,Times">A special directive delimits assembly 
language code. The following example inserts the assembly language instruction 
<B>cli</B> (enable interrupts) into the program at that point.</FONT></P>
<DIR>
<P><CODE>asm(" cli"); </CODE></P></DIR>
<P><FONT face="Times New Roman,Times">Some of the older versions of ICC11 
require a space before the op code as shown in the examples in this chapter. 
ICC12 version 5.1 does not need the space before the op code. The extra space is 
ignored by these newer compiler versions, so experiment with your particular 
compiler to see whether or not the space is required. Macro substitution is not 
performed, but you can define macros that insert assembly. The following macros 
are defined in the HC11.H and HC12.H header files.</FONT></P>
<DIR>
<P><CODE>#define INTR_ON() asm(" cli")<BR>#define INTR_OFF() asm(" 
sei")</CODE></P></DIR>
<P><FONT face="Times New Roman,Times">The following function runs with 
interrupts disabled.</FONT></P>
<DIR>
<P><CODE>void&nbsp;InitFifo(void){<BR>&nbsp;&nbsp;INTR_OFF();&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;/* 
make atomic, entering critical section 
*/<BR>&nbsp;&nbsp;PutI=GetI=Size=0;&nbsp;/* Empty when Size==0 
*/<BR>&nbsp;&nbsp;INTR_ON();&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;/* 
end critical section&nbsp;*/<BR>}</CODE></P></DIR>
<ADDRESS>Listing 12-1: Example of an assembly language macro</ADDRESS>
<P>&nbsp;</P>
<P><FONT face="Times New Roman,Times">Of course, to make use of this feature, we 
must know how the compiler uses the CPU registers, how functions are called, and 
how the operating system and hardware works. It will certainly cause a 
programming error if your embedded assembly modifies the stack pointer, SP, or 
the stack frame pointer, X. On the other hand, in most situations you should be 
able to modify the CCR, A, B, or Y without causing a program error. It is good 
practice to observe the resulting assembly output of the entire function to 
guarantee that the embedded assembly has not affected the surrounding C code. 
Unfortunately, this verification must be repeated when you upgrade the 
compiler.</FONT></P>
<P><FONT face="Times New Roman,Times">You can assess global variables directly 
using its equivalent assembly name (starts with an underscore). The following 
function adds one to the 16-bit global time.</FONT></P>
<DIR>
<P><CODE>short time;<BR>void&nbsp;Add1time(void){<BR>&nbsp;&nbsp;asm(" ldy 
_time");<BR>&nbsp;&nbsp;asm(" iny");<BR>&nbsp;&nbsp;asm(" sty 
_time");<BR>}</CODE></P></DIR>
<ADDRESS>Listing 12-2: Example of an assembly language access to a global 
variable</ADDRESS>
<P>&nbsp;</P>
<P><FONT face="Times New Roman,Times">You can assess local variables directly 
using a <B>%</B>before its name. </FONT></P>
<DIR>
<P><CODE>void&nbsp;InitFifo(void){ unsigned char SaveSP;<BR>&nbsp;&nbsp;asm(" 
tpa");&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;/* Reg A 
contains previous CCR */<BR>&nbsp;&nbsp;asm(" staa %SaveSP");&nbsp;&nbsp;/* Save 
previous CCR value */<BR>&nbsp;&nbsp;asm(" 
sei");&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;/* make 
atomic, entering critical 
section&nbsp;*/<BR>&nbsp;&nbsp;PutI=GetI=Size=0;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;/*&nbsp;Empty 
when Size==0 */<BR>&nbsp;&nbsp;asm(" ldaa %SaveSP");&nbsp;&nbsp;/* Reg A 
contains previous CCR */<BR>&nbsp;&nbsp;asm(" 
tap");&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;/* end 
critical section&nbsp;*/<BR>}</CODE></P></DIR>
<ADDRESS>Listing 12-3: Example of an assembly language access to a local 
variable</ADDRESS>
<P>&nbsp;</P>
<P><FONT face="Times New Roman,Times">The above method of disabling interrupts 
is a good way to execute critical code. This is an appropriate way to execute 
critical code because once the critical code is started it will finish (i.e., 
atomic). The code becomes atomic because interrupts are disabled. At the end of 
the critical code, the interrupt status is restored to its previous value. This 
save/restore interrupt status procedure allows you to nest one critical code 
inside another critical code. If you disable interrupts before the critical code 
and enable interrupts after the critical code, you are presuming that interrupts 
were enabled when the critical code was started. The disable/enable method of 
executing critical code does not allow for one critical code to call another 
critical code. In the following example, <B>InitFifo</B> properly returns with 
interrupts still disabled.</FONT></P>
<DIR>
<P><CODE>void&nbsp;InitSystem(void){ unsigned char SaveSP;<BR>&nbsp;&nbsp;asm(" 
tpa");&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;/* Reg A 
contains previous CCR */<BR>&nbsp;&nbsp;asm(" staa %SaveSP");&nbsp;&nbsp;/* Save 
previous CCR value */<BR>&nbsp;&nbsp;asm(" 
sei");&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;/* make 
atomic, entering critical section 
*/<BR>&nbsp;&nbsp;InitFifo();<BR>&nbsp;&nbsp;InitPort();<BR>&nbsp;&nbsp;InitTimer();<BR>&nbsp;&nbsp;asm(" 
ldaa %SaveSP");&nbsp;&nbsp;/* Reg A contains previous CCR 
*/<BR>&nbsp;&nbsp;asm(" 
tap");&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;/*&nbsp;end&nbsp;critical&nbsp;section&nbsp;*/<BR>}</CODE></P></DIR>
<ADDRESS>Listing 12-4: Example of a multiple line assembly language 
insertion</ADDRESS>
<DIR>
<DIR>
<P>&nbsp;</P></DIR></DIR>
<P><FONT face="Times New Roman,Times">If you don't like the above style of 
writing each line separately, there is a shorthand for multiple-line assembly as 
shown in the following implementation.</FONT></P>
<DIR>
<P><CODE>void&nbsp;InitFifo(void){ unsigned char SaveSP;<BR>&nbsp;&nbsp;asm(" 
tpa\n"&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;/* Reg A 
contains previous CCR */<BR>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;" staa 
%SaveSP\n"&nbsp;&nbsp;/* Save previous CCR value 
*/<BR>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;" 
sei");&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;/*&nbsp;make&nbsp;atomic, 
entering critical section 
*/<BR>&nbsp;&nbsp;PutI=GetI=Size=0;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;/*&nbsp;Empty&nbsp;when&nbsp;Size==0&nbsp;*/<BR>&nbsp;&nbsp;asm(" 
ldaa %SaveSP\n"&nbsp;&nbsp;/* Reg A contains previous CCR 
*/<BR>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;" 
tap");&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;/*&nbsp;end&nbsp;critical&nbsp;section&nbsp;*/<BR>}</CODE></P></DIR>
<ADDRESS>Listing 12-5: A second example of a multiple line assembly language 
insertion</ADDRESS>
<P>&nbsp;</P>
<P><FONT face="Times New Roman,Times">There is yet another style of writing 
multiple-line assembly, but I don't recommend it because it is harder to 
read.</FONT></P>
<DIR>
<P><CODE>void&nbsp;InitFifo(void){ unsigned char SaveSP;<BR>&nbsp;&nbsp;asm(" 
tpa\n staa %SaveSP\n sei");&nbsp;&nbsp;/*&nbsp;make&nbsp;atomic, entering 
critical section 
*/<BR>&nbsp;&nbsp;PutI=GetI=Size=0;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;/*&nbsp;Empty&nbsp;when&nbsp;Size==0&nbsp;*/<BR>&nbsp;&nbsp;asm(" 
ldaa %SaveSP\n 
tap");&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;/*&nbsp;end&nbsp;critical&nbsp;section&nbsp;*/<BR>}</CODE></P></DIR>
<ADDRESS>Listing 12-6: A third example of a multiple line assembly language 
insertion</ADDRESS>
<P>&nbsp;</P>
<P><FONT face="Times New Roman,Times">This last example suggests the macro 
definitions:</FONT></P>
<DIR>
<P><CODE>#define START_CRITICAL() asm(" tpa\n staa %SaveSP\n sei")<BR>#define 
END_CRITICAL() asm( ldaa %SaveSP\n tap")</CODE></P></DIR>
<P><FONT face="Times New Roman,Times">The use of these two macros requires the 
definition of an 8-bit local variable called <B>SaveSP</B>.</FONT></P>
<P>&nbsp;</P>
<P><B><I><FONT face=Helvetica,Arial><A name=MIXTURE></A>How to compile with a 
mixture of assembly and C files</FONT></I></B></P>
<P><FONT face="Times New Roman,Times">The following C program embeds an assembly 
language file (programs and data). In this example the C program accesses a 
global variable (<B>lowGlobal</B>) and calls a function (<B>lowSub</B>) defined 
in the assembly file, and the assembly function assesses a global variable 
(<B>highGlobal</B>) and calls a function (<B>highSub</B>) defined in the C file. 
To access an assembly function, the C program simply calls it, with the standard 
ICC11/ICC12 parameter passing rules. To access an assembly level global 
variable, the C program types it with the <B>extern</B>. Notice however that the 
assembly function (<B>lowSub</B>) does not need a prototype in the high level C 
program. </FONT></P>
<DIR>
<P><CODE>/* C level program&nbsp;&nbsp;&nbsp;&nbsp;file="high.C" */<BR>int 
highGlobal;<BR>extern int lowGlobal;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;// 
typed here but defined in low.s<BR>asm(".include 'low.s' ");&nbsp;&nbsp;&nbsp;// 
insert assembly here<BR>void main(void){ <BR>&nbsp;&nbsp;lowSub(5); 
&nbsp;&nbsp;&nbsp;&nbsp;// call to assemble 
routine<BR>&nbsp;&nbsp;lowGlobal=6;&nbsp;&nbsp;&nbsp;// access of assembly 
global<BR>};<BR>int highSub(int input){return(input++);}</CODE></P></DIR>
<ADDRESS>Listing 12-7: A high-level C program that calls a low-level assembly 
function</ADDRESS>
<DIR>
<DIR>
<P>&nbsp;</P></DIR></DIR>
<P><FONT face="Times New Roman,Times">The following assembly program is embedded 
into the above high level C program. The double colon, <B>::</B>, specifies the 
label as external and will be available in the *.map file. The <B>.area text</B> 
is the standard place for programs (in ROM), and the <B>.area bss</B> is the 
standard area for globals (in RAM). Assembly level functions (e.g., 
<B>_lowSub</B>) and variables (e.g., <B>_lowGlobal</B>) are defined beginning 
with an underscore, "_". Notice that in the assembly file the names have the 
underscore, but the same name in the C file do not. To access a C function, the 
assembly program simply calls it (the name begins with an underscore.) The 
assembly program has full access to high level global variables (the name begins 
with an underscore.)</FONT></P>
<P>&nbsp;</P>
<DIR>
<P><CODE>; assembly language program file="low.s" 
<BR>&nbsp;&nbsp;&nbsp;&nbsp;.area 
text<BR>_lowSub::&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;; 
definition of low level subroutine<BR>&nbsp;&nbsp;&nbsp;&nbsp;jsr 
_highSub&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;; call to high level 
function<BR>&nbsp;&nbsp;&nbsp;&nbsp;std _highGlobal&nbsp;&nbsp;&nbsp;&nbsp;; 
access to high level 
global<BR>&nbsp;&nbsp;&nbsp;&nbsp;rts<BR>&nbsp;&nbsp;&nbsp;&nbsp;.area 
bss<BR>_lowGlobal::&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;; definition 
of low level global<BR>&nbsp;&nbsp;&nbsp;&nbsp;.blkb 2</CODE></P></DIR>
<ADDRESS>Listing 12-8: A low-level assembly program that calls a high-level C 
function</ADDRESS>
<P>&nbsp;</P>
<P><FONT face="Times New Roman,Times">Again, parameter passing with both 
functions (the assembly calls to the C and the C calls to the assembly) must 
adhere to the standard ICC11/ICC12 parameter passing rules: </FONT></P>
<DIR>
<P><FONT face="Times New Roman,Times">The output parameter, if it exists, is 
passed in Register D,</FONT><CODE><BR></CODE><FONT 
face="Times New Roman,Times">The first input parameter is passed in Register 
D,</FONT><CODE><BR></CODE><FONT face="Times New Roman,Times">The remaining input 
parameters are passed on the stack,</FONT><CODE><BR></CODE><FONT 

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -