📄 2.txt
字号:
题目
To the Max
Time Limit:1000MS Memory Limit:10000K
Total Submit:2053 Accepted:996
Description
Given a two-dimensional array of positive and negative integers, a sub-rectangle is any contiguous sub-array of size 1*1 or greater located within the whole array. The sum of a rectangle is the sum of all the elements in that rectangle. In this problem the sub-rectangle with the largest sum is referred to as the maximal sub-rectangle.
As an example, the maximal sub-rectangle of the array:
0 -2 -7 0
9 2 -6 2
-4 1 -4 1
-1 8 0 -2
is in the lower left corner:
9 2
-4 1
-1 8
and has a sum of 15.
Input
The input consists of an N * N array of integers. The input begins with a single positive integer N on a line by itself, indicating the size of the square two-dimensional array. This is followed by N^2 integers separated by whitespace (spaces and newlines). These are the N^2 integers of the array, presented in row-major order. That is, all numbers in the first row, left to right, then all numbers in the second row, left to right, etc. N may be as large as 100. The numbers in the array will be in the range [-127,127].
Output
Output the sum of the maximal sub-rectangle.
Sample Input
4
0 -2 -7 0 9 2 -6 2
-4 1 -4 1 -1
8 0 -2
Sample Output
15
Source
Greater New York 2001
[Submit] [Go Back] [Status] [Discuss]
代码:
#include <iostream.h>
int a[101][101];
int maxsum(int a[],int n)
{
int sum,b;
sum=b=0;
for(int i=1;i<=n;i++)
{
if(b>0)
b+=a[i];
else
b=a[i];
if(b>sum)
sum=b;
}
return sum;
}
int maxsum2(int m,int n)
{
int sum=0;
int*b;
b=new int[n+1];
for(int i=1;i<=m;i++)
{
for(int k=1;k<=n;k++)
b[k]=0;
for(int j=i;j<=m;j++)
{
for(int k=1;k<=n;k++)
b[k]+=a[j][k];
int max=maxsum(b,n);
if(max>sum)
sum=max;
}
}
return sum;
}
int main()
{
int n;
cin>>n;
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++)
cin>>a[i][j];
cout<<maxsum2(n,n)<<endl;
// cin>>n;
return 0;
}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -