⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 dhgeqz.f

📁 计算矩阵的经典开源库.全世界都在用它.相信你也不能例外.
💻 F
📖 第 1 页 / 共 4 页
字号:
      SUBROUTINE DHGEQZ( JOB, COMPQ, COMPZ, N, ILO, IHI, A, LDA, B, LDB,     $                   ALPHAR, ALPHAI, BETA, Q, LDQ, Z, LDZ, WORK,     $                   LWORK, INFO )**  -- LAPACK routine (instrumented to count operations, version 3.0) --*     Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,*     Courant Institute, Argonne National Lab, and Rice University*     June 30, 1999**     .. Scalar Arguments ..      CHARACTER          COMPQ, COMPZ, JOB      INTEGER            IHI, ILO, INFO, LDA, LDB, LDQ, LDZ, LWORK, N*     ..*     .. Array Arguments ..      DOUBLE PRECISION   A( LDA, * ), ALPHAI( * ), ALPHAR( * ),     $                   B( LDB, * ), BETA( * ), Q( LDQ, * ), WORK( * ),     $                   Z( LDZ, * )*     ..*     ---------------------- Begin Timing Code -------------------------*     Common block to return operation count and iteration count*     ITCNT is initialized to 0, OPS is only incremented*     OPST is used to accumulate small contributions to OPS*     to avoid roundoff error*     .. Common blocks ..      COMMON             / LATIME / OPS, ITCNT*     ..*     .. Scalars in Common ..      DOUBLE PRECISION   ITCNT, OPS*     ..*     ----------------------- End Timing Code --------------------------**  Purpose*  =======**  DHGEQZ implements a single-/double-shift version of the QZ method for*  finding the generalized eigenvalues**  w(j)=(ALPHAR(j) + i*ALPHAI(j))/BETAR(j)   of the equation**       det( A - w(i) B ) = 0**  In addition, the pair A,B may be reduced to generalized Schur form:*  B is upper triangular, and A is block upper triangular, where the*  diagonal blocks are either 1-by-1 or 2-by-2, the 2-by-2 blocks having*  complex generalized eigenvalues (see the description of the argument*  JOB.)**  If JOB='S', then the pair (A,B) is simultaneously reduced to Schur*  form by applying one orthogonal tranformation (usually called Q) on*  the left and another (usually called Z) on the right.  The 2-by-2*  upper-triangular diagonal blocks of B corresponding to 2-by-2 blocks*  of A will be reduced to positive diagonal matrices.  (I.e.,*  if A(j+1,j) is non-zero, then B(j+1,j)=B(j,j+1)=0 and B(j,j) and*  B(j+1,j+1) will be positive.)**  If JOB='E', then at each iteration, the same transformations*  are computed, but they are only applied to those parts of A and B*  which are needed to compute ALPHAR, ALPHAI, and BETAR.**  If JOB='S' and COMPQ and COMPZ are 'V' or 'I', then the orthogonal*  transformations used to reduce (A,B) are accumulated into the arrays*  Q and Z s.t.:**       Q(in) A(in) Z(in)* = Q(out) A(out) Z(out)**       Q(in) B(in) Z(in)* = Q(out) B(out) Z(out)***  Ref: C.B. Moler & G.W. Stewart, "An Algorithm for Generalized Matrix*       Eigenvalue Problems", SIAM J. Numer. Anal., 10(1973),*       pp. 241--256.**  Arguments*  =========**  JOB     (input) CHARACTER*1*          = 'E': compute only ALPHAR, ALPHAI, and BETA.  A and B will*                 not necessarily be put into generalized Schur form.*          = 'S': put A and B into generalized Schur form, as well*                 as computing ALPHAR, ALPHAI, and BETA.**  COMPQ   (input) CHARACTER*1*          = 'N': do not modify Q.*          = 'V': multiply the array Q on the right by the transpose of*                 the orthogonal tranformation that is applied to the*                 left side of A and B to reduce them to Schur form.*          = 'I': like COMPQ='V', except that Q will be initialized to*                 the identity first.**  COMPZ   (input) CHARACTER*1*          = 'N': do not modify Z.*          = 'V': multiply the array Z on the right by the orthogonal*                 tranformation that is applied to the right side of*                 A and B to reduce them to Schur form.*          = 'I': like COMPZ='V', except that Z will be initialized to*                 the identity first.**  N       (input) INTEGER*          The order of the matrices A, B, Q, and Z.  N >= 0.**  ILO     (input) INTEGER*  IHI     (input) INTEGER*          It is assumed that A is already upper triangular in rows and*          columns 1:ILO-1 and IHI+1:N.*          1 <= ILO <= IHI <= N, if N > 0; ILO=1 and IHI=0, if N=0.**  A       (input/output) DOUBLE PRECISION array, dimension (LDA, N)*          On entry, the N-by-N upper Hessenberg matrix A.  Elements*          below the subdiagonal must be zero.*          If JOB='S', then on exit A and B will have been*             simultaneously reduced to generalized Schur form.*          If JOB='E', then on exit A will have been destroyed.*             The diagonal blocks will be correct, but the off-diagonal*             portion will be meaningless.**  LDA     (input) INTEGER*          The leading dimension of the array A.  LDA >= max( 1, N ).**  B       (input/output) DOUBLE PRECISION array, dimension (LDB, N)*          On entry, the N-by-N upper triangular matrix B.  Elements*          below the diagonal must be zero.  2-by-2 blocks in B*          corresponding to 2-by-2 blocks in A will be reduced to*          positive diagonal form.  (I.e., if A(j+1,j) is non-zero,*          then B(j+1,j)=B(j,j+1)=0 and B(j,j) and B(j+1,j+1) will be*          positive.)*          If JOB='S', then on exit A and B will have been*             simultaneously reduced to Schur form.*          If JOB='E', then on exit B will have been destroyed.*             Elements corresponding to diagonal blocks of A will be*             correct, but the off-diagonal portion will be meaningless.**  LDB     (input) INTEGER*          The leading dimension of the array B.  LDB >= max( 1, N ).**  ALPHAR  (output) DOUBLE PRECISION array, dimension (N)*          ALPHAR(1:N) will be set to real parts of the diagonal*          elements of A that would result from reducing A and B to*          Schur form and then further reducing them both to triangular*          form using unitary transformations s.t. the diagonal of B*          was non-negative real.  Thus, if A(j,j) is in a 1-by-1 block*          (i.e., A(j+1,j)=A(j,j+1)=0), then ALPHAR(j)=A(j,j).*          Note that the (real or complex) values*          (ALPHAR(j) + i*ALPHAI(j))/BETA(j), j=1,...,N, are the*          generalized eigenvalues of the matrix pencil A - wB.**  ALPHAI  (output) DOUBLE PRECISION array, dimension (N)*          ALPHAI(1:N) will be set to imaginary parts of the diagonal*          elements of A that would result from reducing A and B to*          Schur form and then further reducing them both to triangular*          form using unitary transformations s.t. the diagonal of B*          was non-negative real.  Thus, if A(j,j) is in a 1-by-1 block*          (i.e., A(j+1,j)=A(j,j+1)=0), then ALPHAR(j)=0.*          Note that the (real or complex) values*          (ALPHAR(j) + i*ALPHAI(j))/BETA(j), j=1,...,N, are the*          generalized eigenvalues of the matrix pencil A - wB.**  BETA    (output) DOUBLE PRECISION array, dimension (N)*          BETA(1:N) will be set to the (real) diagonal elements of B*          that would result from reducing A and B to Schur form and*          then further reducing them both to triangular form using*          unitary transformations s.t. the diagonal of B was*          non-negative real.  Thus, if A(j,j) is in a 1-by-1 block*          (i.e., A(j+1,j)=A(j,j+1)=0), then BETA(j)=B(j,j).*          Note that the (real or complex) values*          (ALPHAR(j) + i*ALPHAI(j))/BETA(j), j=1,...,N, are the*          generalized eigenvalues of the matrix pencil A - wB.*          (Note that BETA(1:N) will always be non-negative, and no*          BETAI is necessary.)**  Q       (input/output) DOUBLE PRECISION array, dimension (LDQ, N)*          If COMPQ='N', then Q will not be referenced.*          If COMPQ='V' or 'I', then the transpose of the orthogonal*             transformations which are applied to A and B on the left*             will be applied to the array Q on the right.**  LDQ     (input) INTEGER*          The leading dimension of the array Q.  LDQ >= 1.*          If COMPQ='V' or 'I', then LDQ >= N.**  Z       (input/output) DOUBLE PRECISION array, dimension (LDZ, N)*          If COMPZ='N', then Z will not be referenced.*          If COMPZ='V' or 'I', then the orthogonal transformations*             which are applied to A and B on the right will be applied*             to the array Z on the right.**  LDZ     (input) INTEGER*          The leading dimension of the array Z.  LDZ >= 1.*          If COMPZ='V' or 'I', then LDZ >= N.**  WORK    (workspace/output) DOUBLE PRECISION array, dimension (LWORK)*          On exit, if INFO >= 0, WORK(1) returns the optimal LWORK.**  LWORK   (input) INTEGER*          The dimension of the array WORK.  LWORK >= max(1,N).**          If LWORK = -1, then a workspace query is assumed; the routine*          only calculates the optimal size of the WORK array, returns*          this value as the first entry of the WORK array, and no error*          message related to LWORK is issued by XERBLA.**  INFO    (output) INTEGER*          = 0: successful exit*          < 0: if INFO = -i, the i-th argument had an illegal value*          = 1,...,N: the QZ iteration did not converge.  (A,B) is not*                     in Schur form, but ALPHAR(i), ALPHAI(i), and*                     BETA(i), i=INFO+1,...,N should be correct.*          = N+1,...,2*N: the shift calculation failed.  (A,B) is not*                     in Schur form, but ALPHAR(i), ALPHAI(i), and*                     BETA(i), i=INFO-N+1,...,N should be correct.*          > 2*N:     various "impossible" errors.**  Further Details*  ===============**  Iteration counters:**  JITER  -- counts iterations.*  IITER  -- counts iterations run since ILAST was last*            changed.  This is therefore reset only when a 1-by-1 or*            2-by-2 block deflates off the bottom.**  =====================================================================**     .. Parameters ..      DOUBLE PRECISION   HALF, ZERO, ONE, SAFETY      PARAMETER          ( HALF = 0.5D+0, ZERO = 0.0D+0, ONE = 1.0D+0,     $                   SAFETY = 1.0D+2 )*     ..*     .. Local Scalars ..      LOGICAL            ILAZR2, ILAZRO, ILPIVT, ILQ, ILSCHR, ILZ,     $                   LQUERY      INTEGER            ICOMPQ, ICOMPZ, IFIRST, IFRSTM, IITER, ILAST,     $                   ILASTM, IN, ISCHUR, ISTART, J, JC, JCH, JITER,     $                   JR, MAXIT, NQ, NZ      DOUBLE PRECISION   A11, A12, A1I, A1R, A21, A22, A2I, A2R, AD11,     $                   AD11L, AD12, AD12L, AD21, AD21L, AD22, AD22L,     $                   AD32L, AN, ANORM, ASCALE, ATOL, B11, B1A, B1I,     $                   B1R, B22, B2A, B2I, B2R, BN, BNORM, BSCALE,     $                   BTOL, C, C11I, C11R, C12, C21, C22I, C22R, CL,     $                   CQ, CR, CZ, ESHIFT, OPST, S, S1, S1INV, S2,     $                   SAFMAX, SAFMIN, SCALE, SL, SQI, SQR, SR, SZI,     $                   SZR, T, TAU, TEMP, TEMP2, TEMPI, TEMPR, U1,     $                   U12, U12L, U2, ULP, VS, W11, W12, W21, W22,     $                   WABS, WI, WR, WR2*     ..*     .. Local Arrays ..      DOUBLE PRECISION   V( 3 )*     ..*     .. External Functions ..      LOGICAL            LSAME      DOUBLE PRECISION   DLAMCH, DLANHS, DLAPY2, DLAPY3      EXTERNAL           LSAME, DLAMCH, DLANHS, DLAPY2, DLAPY3*     ..*     .. External Subroutines ..      EXTERNAL           DLAG2, DLARFG, DLARTG, DLASET, DLASV2, DROT,     $                   XERBLA*     ..*     .. Intrinsic Functions ..      INTRINSIC          ABS, DBLE, MAX, MIN, SQRT*     ..*     .. Executable Statements ..**     Decode JOB, COMPQ, COMPZ*      IF( LSAME( JOB, 'E' ) ) THEN         ILSCHR = .FALSE.         ISCHUR = 1      ELSE IF( LSAME( JOB, 'S' ) ) THEN         ILSCHR = .TRUE.         ISCHUR = 2      ELSE         ISCHUR = 0      END IF*      IF( LSAME( COMPQ, 'N' ) ) THEN         ILQ = .FALSE.         ICOMPQ = 1         NQ = 0      ELSE IF( LSAME( COMPQ, 'V' ) ) THEN         ILQ = .TRUE.         ICOMPQ = 2         NQ = N      ELSE IF( LSAME( COMPQ, 'I' ) ) THEN         ILQ = .TRUE.         ICOMPQ = 3         NQ = N      ELSE         ICOMPQ = 0      END IF*      IF( LSAME( COMPZ, 'N' ) ) THEN         ILZ = .FALSE.         ICOMPZ = 1         NZ = 0      ELSE IF( LSAME( COMPZ, 'V' ) ) THEN         ILZ = .TRUE.         ICOMPZ = 2         NZ = N      ELSE IF( LSAME( COMPZ, 'I' ) ) THEN         ILZ = .TRUE.         ICOMPZ = 3         NZ = N      ELSE         ICOMPZ = 0      END IF**     Check Argument Values*      INFO = 0      WORK( 1 ) = MAX( 1, N )      LQUERY = ( LWORK.EQ.-1 )      IF( ISCHUR.EQ.0 ) THEN         INFO = -1      ELSE IF( ICOMPQ.EQ.0 ) THEN         INFO = -2      ELSE IF( ICOMPZ.EQ.0 ) THEN         INFO = -3      ELSE IF( N.LT.0 ) THEN         INFO = -4      ELSE IF( ILO.LT.1 ) THEN         INFO = -5      ELSE IF( IHI.GT.N .OR. IHI.LT.ILO-1 ) THEN         INFO = -6      ELSE IF( LDA.LT.N ) THEN         INFO = -8      ELSE IF( LDB.LT.N ) THEN         INFO = -10      ELSE IF( LDQ.LT.1 .OR. ( ILQ .AND. LDQ.LT.N ) ) THEN         INFO = -15      ELSE IF( LDZ.LT.1 .OR. ( ILZ .AND. LDZ.LT.N ) ) THEN         INFO = -17      ELSE IF( LWORK.LT.MAX( 1, N ) .AND. .NOT.LQUERY ) THEN         INFO = -19      END IF      IF( INFO.NE.0 ) THEN         CALL XERBLA( 'DHGEQZ', -INFO )

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -