📄 dlasq4.f
字号:
SUBROUTINE DLASQ4( I0, N0, Z, PP, N0IN, DMIN, DMIN1, DMIN2, DN, $ DN1, DN2, TAU, TTYPE )** -- LAPACK auxiliary routine (instrumented to count ops, version 3.0) --* Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,* Courant Institute, Argonne National Lab, and Rice University* May 17, 2000** .. Scalar Arguments .. INTEGER I0, N0, N0IN, PP, TTYPE DOUBLE PRECISION DMIN, DMIN1, DMIN2, DN, DN1, DN2, TAU* ..* .. Array Arguments .. DOUBLE PRECISION Z( * )* ..* .. Common block to return operation count .. COMMON / LATIME / OPS, ITCNT* ..* .. Scalars in Common .. DOUBLE PRECISION ITCNT, OPS* ..** Purpose* =======** DLASQ4 computes an approximation TAU to the smallest eigenvalue* using values of d from the previous transform.** I0 (input) INTEGER* First index.** N0 (input) INTEGER* Last index.** Z (input) DOUBLE PRECISION array, dimension ( 4*N )* Z holds the qd array.** PP (input) INTEGER* PP=0 for ping, PP=1 for pong.** NOIN (input) INTEGER* The value of N0 at start of EIGTEST.** DMIN (input) DOUBLE PRECISION* Minimum value of d.** DMIN1 (input) DOUBLE PRECISION* Minimum value of d, excluding D( N0 ).** DMIN2 (input) DOUBLE PRECISION* Minimum value of d, excluding D( N0 ) and D( N0-1 ).** DN (input) DOUBLE PRECISION* d(N)** DN1 (input) DOUBLE PRECISION* d(N-1)** DN2 (input) DOUBLE PRECISION* d(N-2)** TAU (output) DOUBLE PRECISION* This is the shift.** TTYPE (output) INTEGER* Shift type.** Further Details* ===============* CNST1 = 9/16** =====================================================================** .. Parameters .. DOUBLE PRECISION CNST1, CNST2, CNST3 PARAMETER ( CNST1 = 0.5630D0, CNST2 = 1.010D0, $ CNST3 = 1.050D0 ) DOUBLE PRECISION QURTR, THIRD, HALF, ZERO, ONE, TWO, HUNDRD PARAMETER ( QURTR = 0.250D0, THIRD = 0.3330D0, $ HALF = 0.50D0, ZERO = 0.0D0, ONE = 1.0D0, $ TWO = 2.0D0, HUNDRD = 100.0D0 )* ..* .. Local Scalars .. INTEGER I4, NN, NP DOUBLE PRECISION A2, B1, B2, G, GAM, GAP1, GAP2, S* ..* .. Intrinsic Functions .. INTRINSIC DBLE, MAX, MIN, SQRT* ..* .. Save statement .. SAVE G* ..* .. Data statement .. DATA G / ZERO /* ..* .. Executable Statements ..** A negative DMIN forces the shift to take that absolute value* TTYPE records the type of shift.* IF( DMIN.LE.ZERO ) THEN TAU = -DMIN TTYPE = -1 RETURN END IF* NN = 4*N0 + PP IF( N0IN.EQ.N0 ) THEN** No eigenvalues deflated.* IF( DMIN.EQ.DN .OR. DMIN.EQ.DN1 ) THEN* OPS = OPS + DBLE( 7 ) B1 = SQRT( Z( NN-3 ) )*SQRT( Z( NN-5 ) ) B2 = SQRT( Z( NN-7 ) )*SQRT( Z( NN-9 ) ) A2 = Z( NN-7 ) + Z( NN-5 )** Cases 2 and 3.* IF( DMIN.EQ.DN .AND. DMIN1.EQ.DN1 ) THEN OPS = OPS + DBLE( 3 ) GAP2 = DMIN2 - A2 - DMIN2*QURTR IF( GAP2.GT.ZERO .AND. GAP2.GT.B2 ) THEN OPS = OPS + DBLE( 4 ) GAP1 = A2 - DN - ( B2 / GAP2 )*B2 ELSE OPS = OPS + DBLE( 3 ) GAP1 = A2 - DN - ( B1+B2 ) END IF IF( GAP1.GT.ZERO .AND. GAP1.GT.B1 ) THEN OPS = OPS + DBLE( 4 ) S = MAX( DN-( B1 / GAP1 )*B1, HALF*DMIN ) TTYPE = -2 ELSE OPS = OPS + DBLE( 2 ) S = ZERO IF( DN.GT.B1 ) $ S = DN - B1 IF( A2.GT.( B1+B2 ) ) $ S = MIN( S, A2-( B1+B2 ) ) S = MAX( S, THIRD*DMIN ) TTYPE = -3 END IF ELSE** Case 4.* TTYPE = -4 OPS = OPS + DBLE( 1 ) S = QURTR*DMIN IF( DMIN.EQ.DN ) THEN OPS = OPS + DBLE( 1 ) GAM = DN A2 = ZERO IF( Z( NN-5 ) .GT. Z( NN-7 ) ) $ RETURN B2 = Z( NN-5 ) / Z( NN-7 ) NP = NN - 9 ELSE OPS = OPS + DBLE( 2 ) NP = NN - 2*PP B2 = Z( NP-2 ) GAM = DN1 IF( Z( NP-4 ) .GT. Z( NP-2 ) ) $ RETURN A2 = Z( NP-4 ) / Z( NP-2 ) IF( Z( NN-9 ) .GT. Z( NN-11 ) ) $ RETURN B2 = Z( NN-9 ) / Z( NN-11 ) NP = NN - 13 END IF** Approximate contribution to norm squared from I < NN-1.* A2 = A2 + B2 DO 10 I4 = NP, 4*I0 - 1 + PP, -4 OPS = OPS + DBLE( 5 ) IF( B2.EQ.ZERO ) $ GO TO 20 B1 = B2 IF( Z( I4 ) .GT. Z( I4-2 ) ) $ RETURN B2 = B2*( Z( I4 ) / Z( I4-2 ) ) A2 = A2 + B2 IF( HUNDRD*MAX( B2, B1 ).LT.A2 .OR. CNST1.LT.A2 ) $ GO TO 20 10 CONTINUE 20 CONTINUE OPS = OPS + DBLE( 1 ) A2 = CNST3*A2** Rayleigh quotient residual bound.* OPS = OPS + DBLE( 5 ) IF( A2.LT.CNST1 ) $ S = GAM*( ONE-SQRT( A2 ) ) / ( ONE+A2 ) END IF ELSE IF( DMIN.EQ.DN2 ) THEN** Case 5.* TTYPE = -5 OPS = OPS + DBLE( 1 ) S = QURTR*DMIN** Compute contribution to norm squared from I > NN-2.* OPS = OPS + DBLE( 4 ) NP = NN - 2*PP B1 = Z( NP-2 ) B2 = Z( NP-6 ) GAM = DN2 IF( Z( NP-8 ).GT.B2 .OR. Z( NP-4 ).GT.B1 ) $ RETURN A2 = ( Z( NP-8 ) / B2 )*( ONE+Z( NP-4 ) / B1 )** Approximate contribution to norm squared from I < NN-2.* IF( N0-I0.GT.2 ) THEN OPS = OPS + DBLE( 3 ) B2 = Z( NN-13 ) / Z( NN-15 ) A2 = A2 + B2 DO 30 I4 = NN - 17, 4*I0 - 1 + PP, -4 OPS = OPS + DBLE( 5 ) IF( B2.EQ.ZERO ) $ GO TO 40 B1 = B2 IF( Z( I4 ) .GT. Z( I4-2 ) ) $ RETURN B2 = B2*( Z( I4 ) / Z( I4-2 ) ) A2 = A2 + B2 IF( HUNDRD*MAX( B2, B1 ).LT.A2 .OR. CNST1.LT.A2 ) $ GO TO 40 30 CONTINUE 40 CONTINUE A2 = CNST3*A2 END IF* OPS = OPS + DBLE( 5 ) IF( A2.LT.CNST1 ) $ S = GAM*( ONE-SQRT( A2 ) ) / ( ONE+A2 ) ELSE** Case 6, no information to guide us.* IF( TTYPE.EQ.-6 ) THEN OPS = OPS + DBLE( 3 ) G = G + THIRD*( ONE-G ) ELSE IF( TTYPE.EQ.-18 ) THEN OPS = OPS + DBLE( 1 ) G = QURTR*THIRD ELSE G = QURTR END IF OPS = OPS + DBLE( 1 ) S = G*DMIN TTYPE = -6 END IF* ELSE IF( N0IN.EQ.( N0+1 ) ) THEN** One eigenvalue just deflated. Use DMIN1, DN1 for DMIN and DN.* IF( DMIN1.EQ.DN1 .AND. DMIN2.EQ.DN2 ) THEN** Cases 7 and 8.* TTYPE = -7 OPS = OPS + DBLE( 2 ) S = THIRD*DMIN1 IF( Z( NN-5 ).GT.Z( NN-7 ) ) $ RETURN B1 = Z( NN-5 ) / Z( NN-7 ) B2 = B1 IF( B2.EQ.ZERO ) $ GO TO 60 DO 50 I4 = 4*N0 - 9 + PP, 4*I0 - 1 + PP, -4 OPS = OPS + DBLE( 4 ) A2 = B1 IF( Z( I4 ).GT.Z( I4-2 ) ) $ RETURN B1 = B1*( Z( I4 ) / Z( I4-2 ) ) B2 = B2 + B1 IF( HUNDRD*MAX( B1, A2 ).LT.B2 ) $ GO TO 60 50 CONTINUE 60 CONTINUE OPS = OPS + DBLE( 8 ) B2 = SQRT( CNST3*B2 ) A2 = DMIN1 / ( ONE+B2**2 ) GAP2 = HALF*DMIN2 - A2 IF( GAP2.GT.ZERO .AND. GAP2.GT.B2*A2 ) THEN OPS = OPS + DBLE( 7 ) S = MAX( S, A2*( ONE-CNST2*A2*( B2 / GAP2 )*B2 ) ) ELSE OPS = OPS + DBLE( 4 ) S = MAX( S, A2*( ONE-CNST2*B2 ) ) TTYPE = -8 END IF ELSE** Case 9.* OPS = OPS + DBLE( 2 ) S = QURTR*DMIN1 IF( DMIN1.EQ.DN1 ) $ S = HALF*DMIN1 TTYPE = -9 END IF* ELSE IF( N0IN.EQ.( N0+2 ) ) THEN** Two eigenvalues deflated. Use DMIN2, DN2 for DMIN and DN.** Cases 10 and 11.* OPS = OPS + DBLE( 1 ) IF( DMIN2.EQ.DN2 .AND. TWO*Z( NN-5 ).LT.Z( NN-7 ) ) THEN TTYPE = -10 OPS = OPS + DBLE( 1 ) S = THIRD*DMIN2 IF( Z( NN-5 ).GT.Z( NN-7 ) ) $ RETURN B1 = Z( NN-5 ) / Z( NN-7 ) B2 = B1 IF( B2.EQ.ZERO ) $ GO TO 80 DO 70 I4 = 4*N0 - 9 + PP, 4*I0 - 1 + PP, -4 OPS = OPS + DBLE( 4 ) IF( Z( I4 ).GT.Z( I4-2 ) ) $ RETURN B1 = B1*( Z( I4 ) / Z( I4-2 ) ) B2 = B2 + B1 IF( HUNDRD*B1.LT.B2 ) $ GO TO 80 70 CONTINUE 80 CONTINUE OPS = OPS + DBLE( 12 ) B2 = SQRT( CNST3*B2 ) A2 = DMIN2 / ( ONE+B2**2 ) GAP2 = Z( NN-7 ) + Z( NN-9 ) - $ SQRT( Z( NN-11 ) )*SQRT( Z( NN-9 ) ) - A2 IF( GAP2.GT.ZERO .AND. GAP2.GT.B2*A2 ) THEN OPS = OPS + DBLE( 7 ) S = MAX( S, A2*( ONE-CNST2*A2*( B2 / GAP2 )*B2 ) ) ELSE OPS = OPS + DBLE( 4 ) S = MAX( S, A2*( ONE-CNST2*B2 ) ) END IF ELSE OPS = OPS + DBLE( 1 ) S = QURTR*DMIN2 TTYPE = -11 END IF ELSE IF( N0IN.GT.( N0+2 ) ) THEN** Case 12, more than two eigenvalues deflated. No information.* S = ZERO TTYPE = -12 END IF* TAU = S RETURN** End of DLASQ4* END
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -