⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 chgeqz.f

📁 计算矩阵的经典开源库.全世界都在用它.相信你也不能例外.
💻 F
📖 第 1 页 / 共 2 页
字号:
      SUBROUTINE CHGEQZ( JOB, COMPQ, COMPZ, N, ILO, IHI, A, LDA, B, LDB,     $                   ALPHA, BETA, Q, LDQ, Z, LDZ, WORK, LWORK,     $                   RWORK, INFO )**  -- LAPACK routine (instrumented to count operations, version 3.0) --*     Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,*     Courant Institute, Argonne National Lab, and Rice University*     June 30, 1999**     .. Scalar Arguments ..      CHARACTER          COMPQ, COMPZ, JOB      INTEGER            IHI, ILO, INFO, LDA, LDB, LDQ, LDZ, LWORK, N*     ..*     .. Array Arguments ..      REAL               RWORK( * )      COMPLEX            A( LDA, * ), ALPHA( * ), B( LDB, * ),     $                   BETA( * ), Q( LDQ, * ), WORK( * ), Z( LDZ, * )*     ..**     ----------------------- Begin Timing Code ------------------------*     Common block to return operation count and iteration count*     ITCNT is initialized to 0, OPS is only incremented*     OPST is used to accumulate small contributions to OPS*     to avoid roundoff error*     .. Common blocks ..      COMMON             / LATIME / OPS, ITCNT*     ..*     .. Scalars in Common ..      REAL               ITCNT, OPS*     ..*     ------------------------ End Timing Code -------------------------***  Purpose*  =======**  CHGEQZ implements a single-shift version of the QZ*  method for finding the generalized eigenvalues w(i)=ALPHA(i)/BETA(i)*  of the equation**       det( A - w(i) B ) = 0**  If JOB='S', then the pair (A,B) is simultaneously*  reduced to Schur form (i.e., A and B are both upper triangular) by*  applying one unitary tranformation (usually called Q) on the left and*  another (usually called Z) on the right.  The diagonal elements of*  A are then ALPHA(1),...,ALPHA(N), and of B are BETA(1),...,BETA(N).**  If JOB='S' and COMPQ and COMPZ are 'V' or 'I', then the unitary*  transformations used to reduce (A,B) are accumulated into the arrays*  Q and Z s.t.:**       Q(in) A(in) Z(in)* = Q(out) A(out) Z(out)**       Q(in) B(in) Z(in)* = Q(out) B(out) Z(out)***  Ref: C.B. Moler & G.W. Stewart, "An Algorithm for Generalized Matrix*       Eigenvalue Problems", SIAM J. Numer. Anal., 10(1973),*       pp. 241--256.**  Arguments*  =========**  JOB     (input) CHARACTER*1*          = 'E': compute only ALPHA and BETA.  A and B will not*                 necessarily be put into generalized Schur form.*          = 'S': put A and B into generalized Schur form, as well*                 as computing ALPHA and BETA.**  COMPQ   (input) CHARACTER*1*          = 'N': do not modify Q.*          = 'V': multiply the array Q on the right by the conjugate*                 transpose of the unitary tranformation that is*                 applied to the left side of A and B to reduce them*                 to Schur form.*          = 'I': like COMPQ='V', except that Q will be initialized to*                 the identity first.**  COMPZ   (input) CHARACTER*1*          = 'N': do not modify Z.*          = 'V': multiply the array Z on the right by the unitary*                 tranformation that is applied to the right side of*                 A and B to reduce them to Schur form.*          = 'I': like COMPZ='V', except that Z will be initialized to*                 the identity first.**  N       (input) INTEGER*          The order of the matrices A, B, Q, and Z.  N >= 0.**  ILO     (input) INTEGER*  IHI     (input) INTEGER*          It is assumed that A is already upper triangular in rows and*          columns 1:ILO-1 and IHI+1:N.*          1 <= ILO <= IHI <= N, if N > 0; ILO=1 and IHI=0, if N=0.**  A       (input/output) COMPLEX array, dimension (LDA, N)*          On entry, the N-by-N upper Hessenberg matrix A.  Elements*          below the subdiagonal must be zero.*          If JOB='S', then on exit A and B will have been*             simultaneously reduced to upper triangular form.*          If JOB='E', then on exit A will have been destroyed.**  LDA     (input) INTEGER*          The leading dimension of the array A.  LDA >= max( 1, N ).**  B       (input/output) COMPLEX array, dimension (LDB, N)*          On entry, the N-by-N upper triangular matrix B.  Elements*          below the diagonal must be zero.*          If JOB='S', then on exit A and B will have been*             simultaneously reduced to upper triangular form.*          If JOB='E', then on exit B will have been destroyed.**  LDB     (input) INTEGER*          The leading dimension of the array B.  LDB >= max( 1, N ).**  ALPHA   (output) COMPLEX array, dimension (N)*          The diagonal elements of A when the pair (A,B) has been*          reduced to Schur form.  ALPHA(i)/BETA(i) i=1,...,N*          are the generalized eigenvalues.**  BETA    (output) COMPLEX array, dimension (N)*          The diagonal elements of B when the pair (A,B) has been*          reduced to Schur form.  ALPHA(i)/BETA(i) i=1,...,N*          are the generalized eigenvalues.  A and B are normalized*          so that BETA(1),...,BETA(N) are non-negative real numbers.**  Q       (input/output) COMPLEX array, dimension (LDQ, N)*          If COMPQ='N', then Q will not be referenced.*          If COMPQ='V' or 'I', then the conjugate transpose of the*             unitary transformations which are applied to A and B on*             the left will be applied to the array Q on the right.**  LDQ     (input) INTEGER*          The leading dimension of the array Q.  LDQ >= 1.*          If COMPQ='V' or 'I', then LDQ >= N.**  Z       (input/output) COMPLEX array, dimension (LDZ, N)*          If COMPZ='N', then Z will not be referenced.*          If COMPZ='V' or 'I', then the unitary transformations which*             are applied to A and B on the right will be applied to the*             array Z on the right.**  LDZ     (input) INTEGER*          The leading dimension of the array Z.  LDZ >= 1.*          If COMPZ='V' or 'I', then LDZ >= N.**  WORK    (workspace/output) COMPLEX array, dimension (LWORK)*          On exit, if INFO >= 0, WORK(1) returns the optimal LWORK.**  LWORK   (input) INTEGER*          The dimension of the array WORK.  LWORK >= max(1,N).**          If LWORK = -1, then a workspace query is assumed; the routine*          only calculates the optimal size of the WORK array, returns*          this value as the first entry of the WORK array, and no error*          message related to LWORK is issued by XERBLA.**  RWORK   (workspace) REAL array, dimension (N)**  INFO    (output) INTEGER*          = 0: successful exit*          < 0: if INFO = -i, the i-th argument had an illegal value*          = 1,...,N: the QZ iteration did not converge.  (A,B) is not*                     in Schur form, but ALPHA(i) and BETA(i),*                     i=INFO+1,...,N should be correct.*          = N+1,...,2*N: the shift calculation failed.  (A,B) is not*                     in Schur form, but ALPHA(i) and BETA(i),*                     i=INFO-N+1,...,N should be correct.*          > 2*N:     various "impossible" errors.**  Further Details*  ===============**  We assume that complex ABS works as long as its value is less than*  overflow.**  =====================================================================**     .. Parameters ..      COMPLEX            CZERO, CONE      PARAMETER          ( CZERO = ( 0.0E+0, 0.0E+0 ),     $                   CONE = ( 1.0E+0, 0.0E+0 ) )      REAL               ZERO, ONE      PARAMETER          ( ZERO = 0.0E+0, ONE = 1.0E+0 )      REAL               HALF      PARAMETER          ( HALF = 0.5E+0 )*     ..*     .. Local Scalars ..      LOGICAL            ILAZR2, ILAZRO, ILQ, ILSCHR, ILZ, LQUERY      INTEGER            ICOMPQ, ICOMPZ, IFIRST, IFRSTM, IITER, ILAST,     $                   ILASTM, IN, ISCHUR, ISTART, J, JC, JCH, JITER,     $                   JR, MAXIT, NQ, NZ      REAL               ABSB, ANORM, ASCALE, ATOL, BNORM, BSCALE, BTOL,     $                   C, OPST, SAFMIN, TEMP, TEMP2, TEMPR, ULP      COMPLEX            ABI22, AD11, AD12, AD21, AD22, CTEMP, CTEMP2,     $                   CTEMP3, ESHIFT, RTDISC, S, SHIFT, SIGNBC, T,     $                   U12, X*     ..*     .. External Functions ..      LOGICAL            LSAME      REAL               CLANHS, SLAMCH      EXTERNAL           LSAME, CLANHS, SLAMCH*     ..*     .. External Subroutines ..      EXTERNAL           CLARTG, CLASET, CROT, CSCAL, XERBLA*     ..*     .. Intrinsic Functions ..      INTRINSIC          ABS, AIMAG, CMPLX, CONJG, MAX, MIN, REAL, SQRT*     ..*     .. Statement Functions ..      REAL               ABS1*     ..*     .. Statement Function definitions ..      ABS1( X ) = ABS( REAL( X ) ) + ABS( AIMAG( X ) )*     ..*     .. Executable Statements ..*     ----------------------- Begin Timing Code ------------------------      ITCNT = ZERO*     ------------------------ End Timing Code -------------------------**     Decode JOB, COMPQ, COMPZ*      IF( LSAME( JOB, 'E' ) ) THEN         ILSCHR = .FALSE.         ISCHUR = 1      ELSE IF( LSAME( JOB, 'S' ) ) THEN         ILSCHR = .TRUE.         ISCHUR = 2      ELSE         ISCHUR = 0      END IF*      IF( LSAME( COMPQ, 'N' ) ) THEN         ILQ = .FALSE.         ICOMPQ = 1         NQ = 0      ELSE IF( LSAME( COMPQ, 'V' ) ) THEN         ILQ = .TRUE.         ICOMPQ = 2         NQ = N      ELSE IF( LSAME( COMPQ, 'I' ) ) THEN         ILQ = .TRUE.         ICOMPQ = 3         NQ = N      ELSE         ICOMPQ = 0      END IF*      IF( LSAME( COMPZ, 'N' ) ) THEN         ILZ = .FALSE.         ICOMPZ = 1         NZ = 0      ELSE IF( LSAME( COMPZ, 'V' ) ) THEN         ILZ = .TRUE.         ICOMPZ = 2         NZ = N      ELSE IF( LSAME( COMPZ, 'I' ) ) THEN         ILZ = .TRUE.         ICOMPZ = 3         NZ = N      ELSE         ICOMPZ = 0      END IF**     Check Argument Values*      INFO = 0      WORK( 1 ) = MAX( 1, N )      LQUERY = ( LWORK.EQ.-1 )      IF( ISCHUR.EQ.0 ) THEN         INFO = -1      ELSE IF( ICOMPQ.EQ.0 ) THEN         INFO = -2      ELSE IF( ICOMPZ.EQ.0 ) THEN         INFO = -3      ELSE IF( N.LT.0 ) THEN         INFO = -4      ELSE IF( ILO.LT.1 ) THEN         INFO = -5      ELSE IF( IHI.GT.N .OR. IHI.LT.ILO-1 ) THEN         INFO = -6      ELSE IF( LDA.LT.N ) THEN         INFO = -8      ELSE IF( LDB.LT.N ) THEN         INFO = -10      ELSE IF( LDQ.LT.1 .OR. ( ILQ .AND. LDQ.LT.N ) ) THEN         INFO = -14      ELSE IF( LDZ.LT.1 .OR. ( ILZ .AND. LDZ.LT.N ) ) THEN         INFO = -16      ELSE IF( LWORK.LT.MAX( 1, N ) .AND. .NOT.LQUERY ) THEN         INFO = -18      END IF      IF( INFO.NE.0 ) THEN         CALL XERBLA( 'CHGEQZ', -INFO )         RETURN      ELSE IF( LQUERY ) THEN         RETURN      END IF**     Quick return if possible*c     WORK( 1 ) = CMPLX( 1 )      IF( N.LE.0 ) THEN         WORK( 1 ) = CMPLX( 1 )         RETURN      END IF**     Initialize Q and Z*      IF( ICOMPQ.EQ.3 )     $   CALL CLASET( 'Full', N, N, CZERO, CONE, Q, LDQ )      IF( ICOMPZ.EQ.3 )     $   CALL CLASET( 'Full', N, N, CZERO, CONE, Z, LDZ )**     Machine Constants*      IN = IHI + 1 - ILO      SAFMIN = SLAMCH( 'S' )      ULP = SLAMCH( 'E' )*SLAMCH( 'B' )      ANORM = CLANHS( 'F', IN, A( ILO, ILO ), LDA, RWORK )      BNORM = CLANHS( 'F', IN, B( ILO, ILO ), LDB, RWORK )      ATOL = MAX( SAFMIN, ULP*ANORM )      BTOL = MAX( SAFMIN, ULP*BNORM )      ASCALE = ONE / MAX( SAFMIN, ANORM )      BSCALE = ONE / MAX( SAFMIN, BNORM )**     ---------------------- Begin Timing Code -------------------------*     Count ops for norms, etc.      OPST = ZERO      OPS = OPS + REAL( 4*N**2+12*N-5 )*     ----------------------- End Timing Code --------------------------****     Set Eigenvalues IHI+1:N*      DO 10 J = IHI + 1, N         ABSB = ABS( B( J, J ) )         IF( ABSB.GT.SAFMIN ) THEN            SIGNBC = CONJG( B( J, J ) / ABSB )            B( J, J ) = ABSB            IF( ILSCHR ) THEN               CALL CSCAL( J-1, SIGNBC, B( 1, J ), 1 )               CALL CSCAL( J, SIGNBC, A( 1, J ), 1 )*              ----------------- Begin Timing Code ---------------------               OPST = OPST + REAL( 12*( J-1 ) )*              ------------------ End Timing Code ----------------------            ELSE               A( J, J ) = A( J, J )*SIGNBC            END IF            IF( ILZ )     $         CALL CSCAL( N, SIGNBC, Z( 1, J ), 1 )*           ------------------- Begin Timing Code ----------------------            OPST = OPST + REAL( 6*NZ+13 )*           -------------------- End Timing Code -----------------------         ELSE            B( J, J ) = CZERO         END IF         ALPHA( J ) = A( J, J )         BETA( J ) = B( J, J )   10 CONTINUE**     If IHI < ILO, skip QZ steps*      IF( IHI.LT.ILO )     $   GO TO 190**     MAIN QZ ITERATION LOOP**     Initialize dynamic indices**     Eigenvalues ILAST+1:N have been found.*        Column operations modify rows IFRSTM:whatever*        Row operations modify columns whatever:ILASTM**     If only eigenvalues are being computed, then*        IFRSTM is the row of the last splitting row above row ILAST;*        this is always at least ILO.*     IITER counts iterations since the last eigenvalue was found,*        to tell when to use an extraordinary shift.*     MAXIT is the maximum number of QZ sweeps allowed.*      ILAST = IHI      IF( ILSCHR ) THEN         IFRSTM = 1         ILASTM = N      ELSE         IFRSTM = ILO         ILASTM = IHI      END IF      IITER = 0      ESHIFT = CZERO      MAXIT = 30*( IHI-ILO+1 )*      DO 170 JITER = 1, MAXIT**        Check for too many iterations.*         IF( JITER.GT.MAXIT )     $      GO TO 180**        Split the matrix if possible.**        Two tests:*           1: A(j,j-1)=0  or  j=ILO*           2: B(j,j)=0**        Special case: j=ILAST*         IF( ILAST.EQ.ILO ) THEN            GO TO 60         ELSE            IF( ABS1( A( ILAST, ILAST-1 ) ).LE.ATOL ) THEN               A( ILAST, ILAST-1 ) = CZERO               GO TO 60            END IF         END IF*         IF( ABS( B( ILAST, ILAST ) ).LE.BTOL ) THEN            B( ILAST, ILAST ) = CZERO            GO TO 50

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -