⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 slaed4.f

📁 计算矩阵的经典开源库.全世界都在用它.相信你也不能例外.
💻 F
📖 第 1 页 / 共 2 页
字号:
      SUBROUTINE SLAED4( N, I, D, Z, DELTA, RHO, DLAM, INFO )**  -- LAPACK routine (instrumented to count operations, version 3.0) --*     Univ. of Tennessee, Oak Ridge National Lab, Argonne National Lab,*     Courant Institute, NAG Ltd., and Rice University*     June 30, 1999**     .. Scalar Arguments ..      INTEGER            I, INFO, N      REAL               DLAM, RHO*     ..*     .. Array Arguments ..      REAL               D( * ), DELTA( * ), Z( * )*     ..*     Common block to return operation count and iteration count*     ITCNT is unchanged, OPS is only incremented*     .. Common blocks ..      COMMON             / LATIME / OPS, ITCNT*     ..*     .. Scalars in Common ..      REAL               ITCNT, OPS*     ..**  Purpose*  =======**  This subroutine computes the I-th updated eigenvalue of a symmetric*  rank-one modification to a diagonal matrix whose elements are*  given in the array d, and that**             D(i) < D(j)  for  i < j**  and that RHO > 0.  This is arranged by the calling routine, and is*  no loss in generality.  The rank-one modified system is thus**             diag( D )  +  RHO *  Z * Z_transpose.**  where we assume the Euclidean norm of Z is 1.**  The method consists of approximating the rational functions in the*  secular equation by simpler interpolating rational functions.**  Arguments*  =========**  N      (input) INTEGER*         The length of all arrays.**  I      (input) INTEGER*         The index of the eigenvalue to be computed.  1 <= I <= N.**  D      (input) REAL array, dimension (N)*         The original eigenvalues.  It is assumed that they are in*         order, D(I) < D(J)  for I < J.**  Z      (input) REAL array, dimension (N)*         The components of the updating vector.**  DELTA  (output) REAL array, dimension (N)*         If N .ne. 1, DELTA contains (D(j) - lambda_I) in its  j-th*         component.  If N = 1, then DELTA(1) = 1.  The vector DELTA*         contains the information necessary to construct the*         eigenvectors.**  RHO    (input) REAL*         The scalar in the symmetric updating formula.**  DLAM   (output) REAL*         The computed lambda_I, the I-th updated eigenvalue.**  INFO   (output) INTEGER*         = 0:  successful exit*         > 0:  if INFO = 1, the updating process failed.**  Internal Parameters*  ===================**  Logical variable ORGATI (origin-at-i?) is used for distinguishing*  whether D(i) or D(i+1) is treated as the origin.**            ORGATI = .true.    origin at i*            ORGATI = .false.   origin at i+1**   Logical variable SWTCH3 (switch-for-3-poles?) is for noting*   if we are working with THREE poles!**   MAXIT is the maximum number of iterations allowed for each*   eigenvalue.**  Further Details*  ===============**  Based on contributions by*     Ren-Cang Li, Computer Science Division, University of California*     at Berkeley, USA**  =====================================================================**     .. Parameters ..      INTEGER            MAXIT      PARAMETER          ( MAXIT = 20 )      REAL               ZERO, ONE, TWO, THREE, FOUR, EIGHT, TEN      PARAMETER          ( ZERO = 0.0E0, ONE = 1.0E0, TWO = 2.0E0,     $                   THREE = 3.0E0, FOUR = 4.0E0, EIGHT = 8.0E0,     $                   TEN = 10.0E0 )*     ..*     .. Local Scalars ..      LOGICAL            ORGATI, SWTCH, SWTCH3      INTEGER            II, IIM1, IIP1, IP1, ITER, J, NITER      REAL               A, B, C, DEL, DPHI, DPSI, DW, EPS, ERRETM, ETA,     $                   PHI, PREW, PSI, RHOINV, TAU, TEMP, TEMP1, W*     ..*     .. Local Arrays ..      REAL               ZZ( 3 )*     ..*     .. External Functions ..      REAL               SLAMCH      EXTERNAL           SLAMCH*     ..*     .. External Subroutines ..      EXTERNAL           SLAED5, SLAED6*     ..*     .. Intrinsic Functions ..      INTRINSIC          ABS, SQRT*     ..*     .. Executable Statements ..**     Since this routine is called in an inner loop, we do no argument*     checking.**     Quick return for N=1 and 2.*      INFO = 0      IF( N.EQ.1 ) THEN**         Presumably, I=1 upon entry*         OPS = OPS + 3         DLAM = D( 1 ) + RHO*Z( 1 )*Z( 1 )         DELTA( 1 ) = ONE         RETURN      END IF      IF( N.EQ.2 ) THEN         CALL SLAED5( I, D, Z, DELTA, RHO, DLAM )         RETURN      END IF**     Compute machine epsilon*      EPS = SLAMCH( 'Epsilon' )      OPS = OPS + 1      RHOINV = ONE / RHO**     The case I = N*      IF( I.EQ.N ) THEN**        Initialize some basic variables*         II = N - 1         NITER = 1**        Calculate initial guess*         OPS = OPS + 5*N + 1         TEMP = RHO / TWO**        If ||Z||_2 is not one, then TEMP should be set to*        RHO * ||Z||_2^2 / TWO*         DO 10 J = 1, N            DELTA( J ) = ( D( J )-D( I ) ) - TEMP   10    CONTINUE*         PSI = ZERO         DO 20 J = 1, N - 2            PSI = PSI + Z( J )*Z( J ) / DELTA( J )   20    CONTINUE*         C = RHOINV + PSI         W = C + Z( II )*Z( II ) / DELTA( II ) +     $       Z( N )*Z( N ) / DELTA( N )*         IF( W.LE.ZERO ) THEN            OPS = OPS + 7            TEMP = Z( N-1 )*Z( N-1 ) / ( D( N )-D( N-1 )+RHO ) +     $             Z( N )*Z( N ) / RHO            IF( C.LE.TEMP ) THEN               TAU = RHO            ELSE               OPS = OPS + 14               DEL = D( N ) - D( N-1 )               A = -C*DEL + Z( N-1 )*Z( N-1 ) + Z( N )*Z( N )               B = Z( N )*Z( N )*DEL               IF( A.LT.ZERO ) THEN                  TAU = TWO*B / ( SQRT( A*A+FOUR*B*C )-A )               ELSE                  TAU = ( A+SQRT( A*A+FOUR*B*C ) ) / ( TWO*C )               END IF            END IF**           It can be proved that*               D(N)+RHO/2 <= LAMBDA(N) < D(N)+TAU <= D(N)+RHO*         ELSE            OPS = OPS + 16            DEL = D( N ) - D( N-1 )            A = -C*DEL + Z( N-1 )*Z( N-1 ) + Z( N )*Z( N )            B = Z( N )*Z( N )*DEL            IF( A.LT.ZERO ) THEN               TAU = TWO*B / ( SQRT( A*A+FOUR*B*C )-A )            ELSE               TAU = ( A+SQRT( A*A+FOUR*B*C ) ) / ( TWO*C )            END IF**           It can be proved that*               D(N) < D(N)+TAU < LAMBDA(N) < D(N)+RHO/2*         END IF*         OPS = OPS + 2*N + 6*II + 14         DO 30 J = 1, N            DELTA( J ) = ( D( J )-D( I ) ) - TAU   30    CONTINUE**        Evaluate PSI and the derivative DPSI*         DPSI = ZERO         PSI = ZERO         ERRETM = ZERO         DO 40 J = 1, II            TEMP = Z( J ) / DELTA( J )            PSI = PSI + Z( J )*TEMP            DPSI = DPSI + TEMP*TEMP            ERRETM = ERRETM + PSI   40    CONTINUE         ERRETM = ABS( ERRETM )**        Evaluate PHI and the derivative DPHI*         TEMP = Z( N ) / DELTA( N )         PHI = Z( N )*TEMP         DPHI = TEMP*TEMP         ERRETM = EIGHT*( -PHI-PSI ) + ERRETM - PHI + RHOINV +     $            ABS( TAU )*( DPSI+DPHI )*         W = RHOINV + PHI + PSI**        Test for convergence*         IF( ABS( W ).LE.EPS*ERRETM ) THEN            OPS = OPS + 1            DLAM = D( I ) + TAU            GO TO 250         END IF**        Calculate the new step*         OPS = OPS + 12         NITER = NITER + 1         C = W - DELTA( N-1 )*DPSI - DELTA( N )*DPHI         A = ( DELTA( N-1 )+DELTA( N ) )*W -     $       DELTA( N-1 )*DELTA( N )*( DPSI+DPHI )         B = DELTA( N-1 )*DELTA( N )*W         IF( C.LT.ZERO )     $      C = ABS( C )         IF( C.EQ.ZERO ) THEN*           ETA = B/A            OPS = OPS + 1            ETA = RHO - TAU         ELSE IF( A.GE.ZERO ) THEN            OPS = OPS + 8            ETA = ( A+SQRT( ABS( A*A-FOUR*B*C ) ) ) / ( TWO*C )         ELSE            OPS = OPS + 8            ETA = TWO*B / ( A-SQRT( ABS( A*A-FOUR*B*C ) ) )         END IF**        Note, eta should be positive if w is negative, and*        eta should be negative otherwise. However,*        if for some reason caused by roundoff, eta*w > 0,*        we simply use one Newton step instead. This way*        will guarantee eta*w < 0.*         OPS = OPS + N + 6*II + 16         IF( W*ETA.GT.ZERO ) THEN            OPS = OPS + 2            ETA = -W / ( DPSI+DPHI )         END IF         TEMP = TAU + ETA         IF( TEMP.GT.RHO ) THEN            OPS = OPS + 1            ETA = RHO - TAU         END IF         DO 50 J = 1, N            DELTA( J ) = DELTA( J ) - ETA   50    CONTINUE*         TAU = TAU + ETA**        Evaluate PSI and the derivative DPSI*         DPSI = ZERO         PSI = ZERO         ERRETM = ZERO         DO 60 J = 1, II            TEMP = Z( J ) / DELTA( J )            PSI = PSI + Z( J )*TEMP            DPSI = DPSI + TEMP*TEMP            ERRETM = ERRETM + PSI   60    CONTINUE         ERRETM = ABS( ERRETM )**        Evaluate PHI and the derivative DPHI*         TEMP = Z( N ) / DELTA( N )         PHI = Z( N )*TEMP         DPHI = TEMP*TEMP         ERRETM = EIGHT*( -PHI-PSI ) + ERRETM - PHI + RHOINV +     $            ABS( TAU )*( DPSI+DPHI )*         W = RHOINV + PHI + PSI**        Main loop to update the values of the array   DELTA*         ITER = NITER + 1*         DO 90 NITER = ITER, MAXIT**           Test for convergence*            OPS = OPS + 1            IF( ABS( W ).LE.EPS*ERRETM ) THEN               OPS = OPS + 1               DLAM = D( I ) + TAU               GO TO 250            END IF**           Calculate the new step*            OPS = OPS + 36 + N + 6*II            C = W - DELTA( N-1 )*DPSI - DELTA( N )*DPHI            A = ( DELTA( N-1 )+DELTA( N ) )*W -     $          DELTA( N-1 )*DELTA( N )*( DPSI+DPHI )            B = DELTA( N-1 )*DELTA( N )*W            IF( A.GE.ZERO ) THEN               ETA = ( A+SQRT( ABS( A*A-FOUR*B*C ) ) ) / ( TWO*C )            ELSE               ETA = TWO*B / ( A-SQRT( ABS( A*A-FOUR*B*C ) ) )            END IF**           Note, eta should be positive if w is negative, and*           eta should be negative otherwise. However,*           if for some reason caused by roundoff, eta*w > 0,*           we simply use one Newton step instead. This way*           will guarantee eta*w < 0.*            IF( W*ETA.GT.ZERO )     $         ETA = -W / ( DPSI+DPHI )            TEMP = TAU + ETA            IF( TEMP.LE.ZERO )     $         ETA = ETA / TWO            DO 70 J = 1, N               DELTA( J ) = DELTA( J ) - ETA   70       CONTINUE*            TAU = TAU + ETA**           Evaluate PSI and the derivative DPSI*            DPSI = ZERO            PSI = ZERO            ERRETM = ZERO            DO 80 J = 1, II               TEMP = Z( J ) / DELTA( J )               PSI = PSI + Z( J )*TEMP               DPSI = DPSI + TEMP*TEMP               ERRETM = ERRETM + PSI   80       CONTINUE            ERRETM = ABS( ERRETM )**           Evaluate PHI and the derivative DPHI*            TEMP = Z( N ) / DELTA( N )            PHI = Z( N )*TEMP            DPHI = TEMP*TEMP            ERRETM = EIGHT*( -PHI-PSI ) + ERRETM - PHI + RHOINV +     $               ABS( TAU )*( DPSI+DPHI )*            W = RHOINV + PHI + PSI   90    CONTINUE**        Return with INFO = 1, NITER = MAXIT and not converged*         INFO = 1         OPS = OPS + 1         DLAM = D( I ) + TAU         GO TO 250**        End for the case I = N*      ELSE**        The case for I < N*         NITER = 1         IP1 = I + 1**        Calculate initial guess*         TEMP = ( D( IP1 )-D( I ) ) / TWO         DO 100 J = 1, N            DELTA( J ) = ( D( J )-D( I ) ) - TEMP  100    CONTINUE*         PSI = ZERO         DO 110 J = 1, I - 1            PSI = PSI + Z( J )*Z( J ) / DELTA( J )  110    CONTINUE*         PHI = ZERO         DO 120 J = N, I + 2, -1            PHI = PHI + Z( J )*Z( J ) / DELTA( J )  120    CONTINUE         C = RHOINV + PSI + PHI         W = C + Z( I )*Z( I ) / DELTA( I ) +     $       Z( IP1 )*Z( IP1 ) / DELTA( IP1 )*         IF( W.GT.ZERO ) THEN**           d(i)< the ith eigenvalue < (d(i)+d(i+1))/2**           We choose d(i) as origin.*            ORGATI = .TRUE.            DEL = D( IP1 ) - D( I )            A = C*DEL + Z( I )*Z( I ) + Z( IP1 )*Z( IP1 )            B = Z( I )*Z( I )*DEL            IF( A.GT.ZERO ) THEN               TAU = TWO*B / ( A+SQRT( ABS( A*A-FOUR*B*C ) ) )            ELSE

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -