⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 dlasd0.f

📁 计算矩阵的经典开源库.全世界都在用它.相信你也不能例外.
💻 F
字号:
      SUBROUTINE DLASD0( N, SQRE, D, E, U, LDU, VT, LDVT, SMLSIZ, IWORK,     $                   WORK, INFO )**  -- LAPACK auxiliary routine (instrumented to count ops, version 3.0) --*     Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,*     Courant Institute, Argonne National Lab, and Rice University*     June 30, 1999**     .. Scalar Arguments ..      INTEGER            INFO, LDU, LDVT, N, SMLSIZ, SQRE*     ..*     .. Array Arguments ..      INTEGER            IWORK( * )      DOUBLE PRECISION   D( * ), E( * ), U( LDU, * ), VT( LDVT, * ),     $                   WORK( * )*     ..*     .. Common block to return operation count ..      COMMON             / LATIME / OPS, ITCNT*     ..*     .. Scalars in Common ..      DOUBLE PRECISION   ITCNT, OPS*     ..**  Purpose*  =======**  Using a divide and conquer approach, DLASD0 computes the singular*  value decomposition (SVD) of a real upper bidiagonal N-by-M*  matrix B with diagonal D and offdiagonal E, where M = N + SQRE.*  The algorithm computes orthogonal matrices U and VT such that*  B = U * S * VT. The singular values S are overwritten on D.**  A related subroutine, DLASDA, computes only the singular values,*  and optionally, the singular vectors in compact form.**  Arguments*  =========**  N      (input) INTEGER*         On entry, the row dimension of the upper bidiagonal matrix.*         This is also the dimension of the main diagonal array D.**  SQRE   (input) INTEGER*         Specifies the column dimension of the bidiagonal matrix.*         = 0: The bidiagonal matrix has column dimension M = N;*         = 1: The bidiagonal matrix has column dimension M = N+1;**  D      (input/output) DOUBLE PRECISION array, dimension (N)*         On entry D contains the main diagonal of the bidiagonal*         matrix.*         On exit D, if INFO = 0, contains its singular values.**  E      (input) DOUBLE PRECISION array, dimension (M-1)*         Contains the subdiagonal entries of the bidiagonal matrix.*         On exit, E has been destroyed.**  U      (output) DOUBLE PRECISION array, dimension at least (LDQ, N)*         On exit, U contains the left singular vectors.**  LDU    (input) INTEGER*         On entry, leading dimension of U.**  VT     (output) DOUBLE PRECISION array, dimension at least (LDVT, M)*         On exit, VT' contains the right singular vectors.**  LDVT   (input) INTEGER*         On entry, leading dimension of VT.**  SMLSIZ (input) INTEGER*         On entry, maximum size of the subproblems at the*         bottom of the computation tree.**  IWORK  INTEGER work array.*         Dimension must be at least (8 * N)**  WORK   DOUBLE PRECISION work array.*         Dimension must be at least (3 * M**2 + 2 * M)**  INFO   (output) INTEGER*          = 0:  successful exit.*          < 0:  if INFO = -i, the i-th argument had an illegal value.*          > 0:  if INFO = 1, an singular value did not converge**  Further Details*  ===============**  Based on contributions by*     Ming Gu and Huan Ren, Computer Science Division, University of*     California at Berkeley, USA**  =====================================================================**     .. Local Scalars ..      INTEGER            I, I1, IC, IDXQ, IDXQC, IM1, INODE, ITEMP, IWK,     $                   J, LF, LL, LVL, M, NCC, ND, NDB1, NDIML, NDIMR,     $                   NL, NLF, NLP1, NLVL, NR, NRF, NRP1, SQREI      DOUBLE PRECISION   ALPHA, BETA*     ..*     .. External Subroutines ..      EXTERNAL           DLASD1, DLASDQ, DLASDT, XERBLA*     ..*     .. Executable Statements ..**     Test the input parameters.*      INFO = 0*      IF( N.LT.0 ) THEN         INFO = -1      ELSE IF( ( SQRE.LT.0 ) .OR. ( SQRE.GT.1 ) ) THEN         INFO = -2      END IF*      M = N + SQRE*      IF( LDU.LT.N ) THEN         INFO = -6      ELSE IF( LDVT.LT.M ) THEN         INFO = -8      ELSE IF( SMLSIZ.LT.3 ) THEN         INFO = -9      END IF      IF( INFO.NE.0 ) THEN         CALL XERBLA( 'DLASD0', -INFO )         RETURN      END IF**     If the input matrix is too small, call DLASDQ to find the SVD.*      IF( N.LE.SMLSIZ ) THEN         CALL DLASDQ( 'U', SQRE, N, M, N, 0, D, E, VT, LDVT, U, LDU, U,     $                LDU, WORK, INFO )         RETURN      END IF**     Set up the computation tree.*      INODE = 1      NDIML = INODE + N      NDIMR = NDIML + N      IDXQ = NDIMR + N      IWK = IDXQ + N      CALL DLASDT( N, NLVL, ND, IWORK( INODE ), IWORK( NDIML ),     $             IWORK( NDIMR ), SMLSIZ )**     For the nodes on bottom level of the tree, solve*     their subproblems by DLASDQ.*      NDB1 = ( ND+1 ) / 2      NCC = 0      DO 30 I = NDB1, ND**     IC : center row of each node*     NL : number of rows of left  subproblem*     NR : number of rows of right subproblem*     NLF: starting row of the left   subproblem*     NRF: starting row of the right  subproblem*         I1 = I - 1         IC = IWORK( INODE+I1 )         NL = IWORK( NDIML+I1 )         NLP1 = NL + 1         NR = IWORK( NDIMR+I1 )         NRP1 = NR + 1         NLF = IC - NL         NRF = IC + 1         SQREI = 1         CALL DLASDQ( 'U', SQREI, NL, NLP1, NL, NCC, D( NLF ), E( NLF ),     $                VT( NLF, NLF ), LDVT, U( NLF, NLF ), LDU,     $                U( NLF, NLF ), LDU, WORK, INFO )         IF( INFO.NE.0 ) THEN            RETURN         END IF         ITEMP = IDXQ + NLF - 2         DO 10 J = 1, NL            IWORK( ITEMP+J ) = J   10    CONTINUE         IF( I.EQ.ND ) THEN            SQREI = SQRE         ELSE            SQREI = 1         END IF         NRP1 = NR + SQREI         CALL DLASDQ( 'U', SQREI, NR, NRP1, NR, NCC, D( NRF ), E( NRF ),     $                VT( NRF, NRF ), LDVT, U( NRF, NRF ), LDU,     $                U( NRF, NRF ), LDU, WORK, INFO )         IF( INFO.NE.0 ) THEN            RETURN         END IF         ITEMP = IDXQ + IC         DO 20 J = 1, NR            IWORK( ITEMP+J-1 ) = J   20    CONTINUE   30 CONTINUE**     Now conquer each subproblem bottom-up.*      DO 50 LVL = NLVL, 1, -1**        Find the first node LF and last node LL on the*        current level LVL.*         IF( LVL.EQ.1 ) THEN            LF = 1            LL = 1         ELSE            LF = 2**( LVL-1 )            LL = 2*LF - 1         END IF         DO 40 I = LF, LL            IM1 = I - 1            IC = IWORK( INODE+IM1 )            NL = IWORK( NDIML+IM1 )            NR = IWORK( NDIMR+IM1 )            NLF = IC - NL            IF( ( SQRE.EQ.0 ) .AND. ( I.EQ.LL ) ) THEN               SQREI = SQRE            ELSE               SQREI = 1            END IF            IDXQC = IDXQ + NLF - 1            ALPHA = D( IC )            BETA = E( IC )            CALL DLASD1( NL, NR, SQREI, D( NLF ), ALPHA, BETA,     $                   U( NLF, NLF ), LDU, VT( NLF, NLF ), LDVT,     $                   IWORK( IDXQC ), IWORK( IWK ), WORK, INFO )            IF( INFO.NE.0 ) THEN               RETURN            END IF   40    CONTINUE   50 CONTINUE*      RETURN**     End of DLASD0*      END

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -