📄 ssterf.f
字号:
SUBROUTINE SSTERF( N, D, E, INFO )** -- LAPACK routine (instrumented to count operations, version 3.0) --* Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,* Courant Institute, Argonne National Lab, and Rice University* June 30, 1999** .. Scalar Arguments .. INTEGER INFO, N* ..* .. Array Arguments .. REAL D( * ), E( * )* ..* Common block to return operation count and iteration count* ITCNT is initialized to 0, OPS is only incremented* .. Common blocks .. COMMON / LATIME / OPS, ITCNT* ..* .. Scalars in Common .. REAL ITCNT, OPS* ..** Purpose* =======** SSTERF computes all eigenvalues of a symmetric tridiagonal matrix* using the Pal-Walker-Kahan variant of the QL or QR algorithm.** Arguments* =========** N (input) INTEGER* The order of the matrix. N >= 0.** D (input/output) REAL array, dimension (N)* On entry, the n diagonal elements of the tridiagonal matrix.* On exit, if INFO = 0, the eigenvalues in ascending order.** E (input/output) REAL array, dimension (N-1)* On entry, the (n-1) subdiagonal elements of the tridiagonal* matrix.* On exit, E has been destroyed.** INFO (output) INTEGER* = 0: successful exit* < 0: if INFO = -i, the i-th argument had an illegal value* > 0: the algorithm failed to find all of the eigenvalues in* a total of 30*N iterations; if INFO = i, then i* elements of E have not converged to zero.** =====================================================================** .. Parameters .. REAL ZERO, ONE, TWO, THREE PARAMETER ( ZERO = 0.0E0, ONE = 1.0E0, TWO = 2.0E0, $ THREE = 3.0E0 ) INTEGER MAXIT PARAMETER ( MAXIT = 30 )* ..* .. Local Scalars .. INTEGER I, ISCALE, JTOT, L, L1, LEND, LENDSV, LSV, M, $ NMAXIT REAL ALPHA, ANORM, BB, C, EPS, EPS2, GAMMA, OLDC, $ OLDGAM, P, R, RT1, RT2, RTE, S, SAFMAX, SAFMIN, $ SIGMA, SSFMAX, SSFMIN* ..* .. External Functions .. REAL SLAMCH, SLANST, SLAPY2 EXTERNAL SLAMCH, SLANST, SLAPY2* ..* .. External Subroutines .. EXTERNAL SLAE2, SLASCL, SLASRT, XERBLA* ..* .. Intrinsic Functions .. INTRINSIC ABS, SIGN, SQRT* ..* .. Executable Statements ..** Test the input parameters.* INFO = 0** Quick return if possible* ITCNT = 0 IF( N.LT.0 ) THEN INFO = -1 CALL XERBLA( 'SSTERF', -INFO ) RETURN END IF IF( N.LE.1 ) $ RETURN** Determine the unit roundoff for this environment.* OPS = OPS + 6 EPS = SLAMCH( 'E' ) EPS2 = EPS**2 SAFMIN = SLAMCH( 'S' ) SAFMAX = ONE / SAFMIN SSFMAX = SQRT( SAFMAX ) / THREE SSFMIN = SQRT( SAFMIN ) / EPS2** Compute the eigenvalues of the tridiagonal matrix.* NMAXIT = N*MAXIT SIGMA = ZERO JTOT = 0** Determine where the matrix splits and choose QL or QR iteration* for each block, according to whether top or bottom diagonal* element is smaller.* L1 = 1* 10 CONTINUE IF( L1.GT.N ) $ GO TO 170 IF( L1.GT.1 ) $ E( L1-1 ) = ZERO DO 20 M = L1, N - 1 OPS = OPS + 4 IF( ABS( E( M ) ).LE.( SQRT( ABS( D( M ) ) )* $ SQRT( ABS( D( M+1 ) ) ) )*EPS ) THEN E( M ) = ZERO GO TO 30 END IF 20 CONTINUE M = N* 30 CONTINUE L = L1 LSV = L LEND = M LENDSV = LEND L1 = M + 1 IF( LEND.EQ.L ) $ GO TO 10** Scale submatrix in rows and columns L to LEND* OPS = OPS + 2*( LEND-L+1 ) ANORM = SLANST( 'I', LEND-L+1, D( L ), E( L ) ) ISCALE = 0 IF( ANORM.GT.SSFMAX ) THEN ISCALE = 1 OPS = OPS + 2*( LEND-L ) + 1 CALL SLASCL( 'G', 0, 0, ANORM, SSFMAX, LEND-L+1, 1, D( L ), N, $ INFO ) CALL SLASCL( 'G', 0, 0, ANORM, SSFMAX, LEND-L, 1, E( L ), N, $ INFO ) ELSE IF( ANORM.LT.SSFMIN ) THEN ISCALE = 2 OPS = OPS + 2*( LEND-L ) + 1 CALL SLASCL( 'G', 0, 0, ANORM, SSFMIN, LEND-L+1, 1, D( L ), N, $ INFO ) CALL SLASCL( 'G', 0, 0, ANORM, SSFMIN, LEND-L, 1, E( L ), N, $ INFO ) END IF* OPS = OPS + 2*( LEND-L ) DO 40 I = L, LEND - 1 E( I ) = E( I )**2 40 CONTINUE** Choose between QL and QR iteration* IF( ABS( D( LEND ) ).LT.ABS( D( L ) ) ) THEN LEND = LSV L = LENDSV END IF* IF( LEND.GE.L ) THEN** QL Iteration** Look for small subdiagonal element.* 50 CONTINUE IF( L.NE.LEND ) THEN DO 60 M = L, LEND - 1 OPS = OPS + 3 IF( ABS( E( M ) ).LE.EPS2*ABS( D( M )*D( M+1 ) ) ) $ GO TO 70 60 CONTINUE END IF M = LEND* 70 CONTINUE IF( M.LT.LEND ) $ E( M ) = ZERO P = D( L ) IF( M.EQ.L ) $ GO TO 90** If remaining matrix is 2 by 2, use SLAE2 to compute its* eigenvalues.* IF( M.EQ.L+1 ) THEN OPS = OPS + 16 RTE = SQRT( E( L ) ) CALL SLAE2( D( L ), RTE, D( L+1 ), RT1, RT2 ) D( L ) = RT1 D( L+1 ) = RT2 E( L ) = ZERO L = L + 2 IF( L.LE.LEND ) $ GO TO 50 GO TO 150 END IF* IF( JTOT.EQ.NMAXIT ) $ GO TO 150 JTOT = JTOT + 1** Form shift.* OPS = OPS + 14 RTE = SQRT( E( L ) ) SIGMA = ( D( L+1 )-P ) / ( TWO*RTE ) R = SLAPY2( SIGMA, ONE ) SIGMA = P - ( RTE / ( SIGMA+SIGN( R, SIGMA ) ) )* C = ONE S = ZERO GAMMA = D( M ) - SIGMA P = GAMMA*GAMMA** Inner loop* OPS = OPS + 12*( M-L ) DO 80 I = M - 1, L, -1 BB = E( I ) R = P + BB IF( I.NE.M-1 ) $ E( I+1 ) = S*R OLDC = C C = P / R S = BB / R OLDGAM = GAMMA ALPHA = D( I ) GAMMA = C*( ALPHA-SIGMA ) - S*OLDGAM D( I+1 ) = OLDGAM + ( ALPHA-GAMMA ) IF( C.NE.ZERO ) THEN P = ( GAMMA*GAMMA ) / C ELSE P = OLDC*BB END IF 80 CONTINUE* OPS = OPS + 2 E( L ) = S*P D( L ) = SIGMA + GAMMA GO TO 50** Eigenvalue found.* 90 CONTINUE D( L ) = P* L = L + 1 IF( L.LE.LEND ) $ GO TO 50 GO TO 150* ELSE** QR Iteration** Look for small superdiagonal element.* 100 CONTINUE DO 110 M = L, LEND + 1, -1 OPS = OPS + 3 IF( ABS( E( M-1 ) ).LE.EPS2*ABS( D( M )*D( M-1 ) ) ) $ GO TO 120 110 CONTINUE M = LEND* 120 CONTINUE IF( M.GT.LEND ) $ E( M-1 ) = ZERO P = D( L ) IF( M.EQ.L ) $ GO TO 140** If remaining matrix is 2 by 2, use SLAE2 to compute its* eigenvalues.* IF( M.EQ.L-1 ) THEN OPS = OPS + 16 RTE = SQRT( E( L-1 ) ) CALL SLAE2( D( L ), RTE, D( L-1 ), RT1, RT2 ) D( L ) = RT1 D( L-1 ) = RT2 E( L-1 ) = ZERO L = L - 2 IF( L.GE.LEND ) $ GO TO 100 GO TO 150 END IF* IF( JTOT.EQ.NMAXIT ) $ GO TO 150 JTOT = JTOT + 1** Form shift.* OPS = OPS + 14 RTE = SQRT( E( L-1 ) ) SIGMA = ( D( L-1 )-P ) / ( TWO*RTE ) R = SLAPY2( SIGMA, ONE ) SIGMA = P - ( RTE / ( SIGMA+SIGN( R, SIGMA ) ) )* C = ONE S = ZERO GAMMA = D( M ) - SIGMA P = GAMMA*GAMMA** Inner loop* OPS = OPS + 12*( L-M ) DO 130 I = M, L - 1 BB = E( I ) R = P + BB IF( I.NE.M ) $ E( I-1 ) = S*R OLDC = C C = P / R S = BB / R OLDGAM = GAMMA ALPHA = D( I+1 ) GAMMA = C*( ALPHA-SIGMA ) - S*OLDGAM D( I ) = OLDGAM + ( ALPHA-GAMMA ) IF( C.NE.ZERO ) THEN P = ( GAMMA*GAMMA ) / C ELSE P = OLDC*BB END IF 130 CONTINUE* OPS = OPS + 2 E( L-1 ) = S*P D( L ) = SIGMA + GAMMA GO TO 100** Eigenvalue found.* 140 CONTINUE D( L ) = P* L = L - 1 IF( L.GE.LEND ) $ GO TO 100 GO TO 150* END IF** Undo scaling if necessary* 150 CONTINUE IF( ISCALE.EQ.1 ) THEN OPS = OPS + LENDSV - LSV + 1 CALL SLASCL( 'G', 0, 0, SSFMAX, ANORM, LENDSV-LSV+1, 1, $ D( LSV ), N, INFO ) END IF IF( ISCALE.EQ.2 ) THEN OPS = OPS + LENDSV - LSV + 1 CALL SLASCL( 'G', 0, 0, SSFMIN, ANORM, LENDSV-LSV+1, 1, $ D( LSV ), N, INFO ) END IF** Check for no convergence to an eigenvalue after a total* of N*MAXIT iterations.* IF( JTOT.LT.NMAXIT ) $ GO TO 10 DO 160 I = 1, N - 1 IF( E( I ).NE.ZERO ) $ INFO = INFO + 1 160 CONTINUE GO TO 180** Sort eigenvalues in increasing order.* 170 CONTINUE CALL SLASRT( 'I', N, D, INFO )* 180 CONTINUE RETURN** End of SSTERF* END
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -