📄 zlaed7.f
字号:
SUBROUTINE ZLAED7( N, CUTPNT, QSIZ, TLVLS, CURLVL, CURPBM, D, Q, $ LDQ, RHO, INDXQ, QSTORE, QPTR, PRMPTR, PERM, $ GIVPTR, GIVCOL, GIVNUM, WORK, RWORK, IWORK, $ INFO )** -- LAPACK routine (instrumented to count operations, version 3.0) --* Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,* Courant Institute, Argonne National Lab, and Rice University* September 30, 1994** .. Scalar Arguments .. INTEGER CURLVL, CURPBM, CUTPNT, INFO, LDQ, N, QSIZ, $ TLVLS DOUBLE PRECISION RHO* ..* .. Array Arguments .. INTEGER GIVCOL( 2, * ), GIVPTR( * ), INDXQ( * ), $ IWORK( * ), PERM( * ), PRMPTR( * ), QPTR( * ) DOUBLE PRECISION D( * ), GIVNUM( 2, * ), QSTORE( * ), RWORK( * ) COMPLEX*16 Q( LDQ, * ), WORK( * )* ..* Common block to return operation count and iteration count* ITCNT is unchanged, OPS is only incremented* .. Common blocks .. COMMON / LATIME / OPS, ITCNT* ..* .. Scalars in Common .. DOUBLE PRECISION ITCNT, OPS* ..** Purpose* =======** ZLAED7 computes the updated eigensystem of a diagonal* matrix after modification by a rank-one symmetric matrix. This* routine is used only for the eigenproblem which requires all* eigenvalues and optionally eigenvectors of a dense or banded* Hermitian matrix that has been reduced to tridiagonal form.** T = Q(in) ( D(in) + RHO * Z*Z' ) Q'(in) = Q(out) * D(out) * Q'(out)** where Z = Q'u, u is a vector of length N with ones in the* CUTPNT and CUTPNT + 1 th elements and zeros elsewhere.** The eigenvectors of the original matrix are stored in Q, and the* eigenvalues are in D. The algorithm consists of three stages:** The first stage consists of deflating the size of the problem* when there are multiple eigenvalues or if there is a zero in* the Z vector. For each such occurence the dimension of the* secular equation problem is reduced by one. This stage is* performed by the routine DLAED2.** The second stage consists of calculating the updated* eigenvalues. This is done by finding the roots of the secular* equation via the routine DLAED4 (as called by SLAED3).* This routine also calculates the eigenvectors of the current* problem.** The final stage consists of computing the updated eigenvectors* directly using the updated eigenvalues. The eigenvectors for* the current problem are multiplied with the eigenvectors from* the overall problem.** Arguments* =========** N (input) INTEGER* The dimension of the symmetric tridiagonal matrix. N >= 0.** CUTPNT (input) INTEGER* Contains the location of the last eigenvalue in the leading* sub-matrix. min(1,N) <= CUTPNT <= N.** QSIZ (input) INTEGER* The dimension of the unitary matrix used to reduce* the full matrix to tridiagonal form. QSIZ >= N.** TLVLS (input) INTEGER* The total number of merging levels in the overall divide and* conquer tree.** CURLVL (input) INTEGER* The current level in the overall merge routine,* 0 <= curlvl <= tlvls.** CURPBM (input) INTEGER* The current problem in the current level in the overall* merge routine (counting from upper left to lower right).** D (input/output) DOUBLE PRECISION array, dimension (N)* On entry, the eigenvalues of the rank-1-perturbed matrix.* On exit, the eigenvalues of the repaired matrix.** Q (input/output) COMPLEX*16 array, dimension (LDQ,N)* On entry, the eigenvectors of the rank-1-perturbed matrix.* On exit, the eigenvectors of the repaired tridiagonal matrix.** LDQ (input) INTEGER* The leading dimension of the array Q. LDQ >= max(1,N).** RHO (input) DOUBLE PRECISION* Contains the subdiagonal element used to create the rank-1* modification.** INDXQ (output) INTEGER array, dimension (N)* This contains the permutation which will reintegrate the* subproblem just solved back into sorted order,* ie. D( INDXQ( I = 1, N ) ) will be in ascending order.** IWORK (workspace) INTEGER array, dimension (4*N)** RWORK (workspace) DOUBLE PRECISION array,* dimension (3*N+2*QSIZ*N)** WORK (workspace) COMPLEX*16 array, dimension (QSIZ*N)** QSTORE (input/output) DOUBLE PRECISION array, dimension (N**2+1)* Stores eigenvectors of submatrices encountered during* divide and conquer, packed together. QPTR points to* beginning of the submatrices.** QPTR (input/output) INTEGER array, dimension (N+2)* List of indices pointing to beginning of submatrices stored* in QSTORE. The submatrices are numbered starting at the* bottom left of the divide and conquer tree, from left to* right and bottom to top.** PRMPTR (input) INTEGER array, dimension (N lg N)* Contains a list of pointers which indicate where in PERM a* level's permutation is stored. PRMPTR(i+1) - PRMPTR(i)* indicates the size of the permutation and also the size of* the full, non-deflated problem.** PERM (input) INTEGER array, dimension (N lg N)* Contains the permutations (from deflation and sorting) to be* applied to each eigenblock.** GIVPTR (input) INTEGER array, dimension (N lg N)* Contains a list of pointers which indicate where in GIVCOL a* level's Givens rotations are stored. GIVPTR(i+1) - GIVPTR(i)* indicates the number of Givens rotations.** GIVCOL (input) INTEGER array, dimension (2, N lg N)* Each pair of numbers indicates a pair of columns to take place* in a Givens rotation.** GIVNUM (input) DOUBLE PRECISION array, dimension (2, N lg N)* Each number indicates the S value to be used in the* corresponding Givens rotation.** INFO (output) INTEGER* = 0: successful exit.* < 0: if INFO = -i, the i-th argument had an illegal value.* > 0: if INFO = 1, an eigenvalue did not converge** =====================================================================** .. Local Scalars .. INTEGER COLTYP, CURR, I, IDLMDA, IND1, IND2, INDX, $ INDXC, INDXP, IQ, IW, IZ, K, N1, N2, PTR* ..* .. External Subroutines .. EXTERNAL DLAED9, DLAEDA, DLAMRG, XERBLA, ZLACRM, ZLAED8* ..* .. Intrinsic Functions .. INTRINSIC DBLE, MAX, MIN* ..* .. Executable Statements ..** Test the input parameters.* INFO = 0** IF( ICOMPQ.LT.0 .OR. ICOMPQ.GT.1 ) THEN* INFO = -1* ELSE IF( N.LT.0 ) THEN IF( N.LT.0 ) THEN INFO = -1 ELSE IF( MIN( 1, N ).GT.CUTPNT .OR. N.LT.CUTPNT ) THEN INFO = -2 ELSE IF( QSIZ.LT.N ) THEN INFO = -3 ELSE IF( LDQ.LT.MAX( 1, N ) ) THEN INFO = -9 END IF IF( INFO.NE.0 ) THEN CALL XERBLA( 'ZLAED7', -INFO ) RETURN END IF** Quick return if possible* IF( N.EQ.0 ) $ RETURN** The following values are for bookkeeping purposes only. They are* integer pointers which indicate the portion of the workspace* used by a particular array in DLAED2 and SLAED3.* IZ = 1 IDLMDA = IZ + N IW = IDLMDA + N IQ = IW + N* INDX = 1 INDXC = INDX + N COLTYP = INDXC + N INDXP = COLTYP + N** Form the z-vector which consists of the last row of Q_1 and the* first row of Q_2.* PTR = 1 + 2**TLVLS DO 10 I = 1, CURLVL - 1 PTR = PTR + 2**( TLVLS-I ) 10 CONTINUE CURR = PTR + CURPBM CALL DLAEDA( N, TLVLS, CURLVL, CURPBM, PRMPTR, PERM, GIVPTR, $ GIVCOL, GIVNUM, QSTORE, QPTR, RWORK( IZ ), $ RWORK( IZ+N ), INFO )** When solving the final problem, we no longer need the stored data,* so we will overwrite the data from this level onto the previously* used storage space.* IF( CURLVL.EQ.TLVLS ) THEN QPTR( CURR ) = 1 PRMPTR( CURR ) = 1 GIVPTR( CURR ) = 1 END IF** Sort and Deflate eigenvalues.* CALL ZLAED8( K, N, QSIZ, Q, LDQ, D, RHO, CUTPNT, RWORK( IZ ), $ RWORK( IDLMDA ), WORK, QSIZ, RWORK( IW ), $ IWORK( INDXP ), IWORK( INDX ), INDXQ, $ PERM( PRMPTR( CURR ) ), GIVPTR( CURR+1 ), $ GIVCOL( 1, GIVPTR( CURR ) ), $ GIVNUM( 1, GIVPTR( CURR ) ), INFO ) PRMPTR( CURR+1 ) = PRMPTR( CURR ) + N GIVPTR( CURR+1 ) = GIVPTR( CURR+1 ) + GIVPTR( CURR )** Solve Secular Equation.* IF( K.NE.0 ) THEN CALL DLAED9( K, 1, K, N, D, RWORK( IQ ), K, RHO, $ RWORK( IDLMDA ), RWORK( IW ), $ QSTORE( QPTR( CURR ) ), K, INFO ) OPS = OPS + 4*DBLE( QSIZ )*K*K CALL ZLACRM( QSIZ, K, WORK, QSIZ, QSTORE( QPTR( CURR ) ), K, Q, $ LDQ, RWORK( IQ ) ) QPTR( CURR+1 ) = QPTR( CURR ) + K**2 IF( INFO.NE.0 ) THEN RETURN END IF** Prepare the INDXQ sorting premutation.* N1 = K N2 = N - K IND1 = 1 IND2 = N CALL DLAMRG( N1, N2, D, 1, -1, INDXQ ) ELSE QPTR( CURR+1 ) = QPTR( CURR ) DO 20 I = 1, N INDXQ( I ) = I 20 CONTINUE END IF* RETURN** End of ZLAED7* END
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -