⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 slaed8.f

📁 计算矩阵的经典开源库.全世界都在用它.相信你也不能例外.
💻 F
字号:
      SUBROUTINE SLAED8( ICOMPQ, K, N, QSIZ, D, Q, LDQ, INDXQ, RHO,     $                   CUTPNT, Z, DLAMDA, Q2, LDQ2, W, PERM, GIVPTR,     $                   GIVCOL, GIVNUM, INDXP, INDX, INFO )**  -- LAPACK routine (instrumented to count operations, version 3.0) --*     Univ. of Tennessee, Oak Ridge National Lab, Argonne National Lab,*     Courant Institute, NAG Ltd., and Rice University*     September 30, 1994**     .. Scalar Arguments ..      INTEGER            CUTPNT, GIVPTR, ICOMPQ, INFO, K, LDQ, LDQ2, N,     $                   QSIZ      REAL               RHO*     ..*     .. Array Arguments ..      INTEGER            GIVCOL( 2, * ), INDX( * ), INDXP( * ),     $                   INDXQ( * ), PERM( * )      REAL               D( * ), DLAMDA( * ), GIVNUM( 2, * ),     $                   Q( LDQ, * ), Q2( LDQ2, * ), W( * ), Z( * )*     ..*     Common block to return operation count and iteration count*     ITCNT is unchanged, OPS is only incremented*     .. Common blocks ..      COMMON             / LATIME / OPS, ITCNT*     ..*     .. Scalars in Common ..      REAL               ITCNT, OPS*     ..**  Purpose*  =======**  SLAED8 merges the two sets of eigenvalues together into a single*  sorted set.  Then it tries to deflate the size of the problem.*  There are two ways in which deflation can occur:  when two or more*  eigenvalues are close together or if there is a tiny element in the*  Z vector.  For each such occurrence the order of the related secular*  equation problem is reduced by one.**  Arguments*  =========**  ICOMPQ  (input) INTEGER*          = 0:  Compute eigenvalues only.*          = 1:  Compute eigenvectors of original dense symmetric matrix*                also.  On entry, Q contains the orthogonal matrix used*                to reduce the original matrix to tridiagonal form.**  K      (output) INTEGER*         The number of non-deflated eigenvalues, and the order of the*         related secular equation.**  N      (input) INTEGER*         The dimension of the symmetric tridiagonal matrix.  N >= 0.**  QSIZ   (input) INTEGER*         The dimension of the orthogonal matrix used to reduce*         the full matrix to tridiagonal form.  QSIZ >= N if ICOMPQ = 1.**  D      (input/output) REAL array, dimension (N)*         On entry, the eigenvalues of the two submatrices to be*         combined.  On exit, the trailing (N-K) updated eigenvalues*         (those which were deflated) sorted into increasing order.**  Q      (input/output) REAL array, dimension (LDQ,N)*         If ICOMPQ = 0, Q is not referenced.  Otherwise,*         on entry, Q contains the eigenvectors of the partially solved*         system which has been previously updated in matrix*         multiplies with other partially solved eigensystems.*         On exit, Q contains the trailing (N-K) updated eigenvectors*         (those which were deflated) in its last N-K columns.**  LDQ    (input) INTEGER*         The leading dimension of the array Q.  LDQ >= max(1,N).**  INDXQ  (input) INTEGER array, dimension (N)*         The permutation which separately sorts the two sub-problems*         in D into ascending order.  Note that elements in the second*         half of this permutation must first have CUTPNT added to*         their values in order to be accurate.**  RHO    (input/output) REAL*         On entry, the off-diagonal element associated with the rank-1*         cut which originally split the two submatrices which are now*         being recombined.*         On exit, RHO has been modified to the value required by*         SLAED3.**  CUTPNT (input) INTEGER*         The location of the last eigenvalue in the leading*         sub-matrix.  min(1,N) <= CUTPNT <= N.**  Z      (input) REAL array, dimension (N)*         On entry, Z contains the updating vector (the last row of*         the first sub-eigenvector matrix and the first row of the*         second sub-eigenvector matrix).*         On exit, the contents of Z are destroyed by the updating*         process.**  DLAMDA (output) REAL array, dimension (N)*         A copy of the first K eigenvalues which will be used by*         SLAED3 to form the secular equation.**  Q2     (output) REAL array, dimension (LDQ2,N)*         If ICOMPQ = 0, Q2 is not referenced.  Otherwise,*         a copy of the first K eigenvectors which will be used by*         SLAED7 in a matrix multiply (SGEMM) to update the new*         eigenvectors.**  LDQ2   (input) INTEGER*         The leading dimension of the array Q2.  LDQ2 >= max(1,N).**  W      (output) REAL array, dimension (N)*         The first k values of the final deflation-altered z-vector and*         will be passed to SLAED3.**  PERM   (output) INTEGER array, dimension (N)*         The permutations (from deflation and sorting) to be applied*         to each eigenblock.**  GIVPTR (output) INTEGER*         The number of Givens rotations which took place in this*         subproblem.**  GIVCOL (output) INTEGER array, dimension (2, N)*         Each pair of numbers indicates a pair of columns to take place*         in a Givens rotation.**  GIVNUM (output) REAL array, dimension (2, N)*         Each number indicates the S value to be used in the*         corresponding Givens rotation.**  INDXP  (workspace) INTEGER array, dimension (N)*         The permutation used to place deflated values of D at the end*         of the array.  INDXP(1:K) points to the nondeflated D-values*         and INDXP(K+1:N) points to the deflated eigenvalues.**  INDX   (workspace) INTEGER array, dimension (N)*         The permutation used to sort the contents of D into ascending*         order.**  INFO   (output) INTEGER*          = 0:  successful exit.*          < 0:  if INFO = -i, the i-th argument had an illegal value.**  Further Details*  ===============**  Based on contributions by*     Jeff Rutter, Computer Science Division, University of California*     at Berkeley, USA**  =====================================================================**     .. Parameters ..      REAL               MONE, ZERO, ONE, TWO, EIGHT      PARAMETER          ( MONE = -1.0E0, ZERO = 0.0E0, ONE = 1.0E0,     $                   TWO = 2.0E0, EIGHT = 8.0E0 )*     ..*     .. Local Scalars ..*      INTEGER            I, IMAX, J, JLAM, JMAX, JP, K2, N1, N1P1, N2      REAL               C, EPS, S, T, TAU, TOL*     ..*     .. External Functions ..      INTEGER            ISAMAX      REAL               SLAMCH, SLAPY2      EXTERNAL           ISAMAX, SLAMCH, SLAPY2*     ..*     .. External Subroutines ..      EXTERNAL           SCOPY, SLACPY, SLAMRG, SROT, SSCAL, XERBLA*     ..*     .. Intrinsic Functions ..      INTRINSIC          ABS, MAX, MIN, SQRT*     ..*     .. Executable Statements ..**     Test the input parameters.*      INFO = 0*      IF( ICOMPQ.LT.0 .OR. ICOMPQ.GT.1 ) THEN         INFO = -1      ELSE IF( N.LT.0 ) THEN         INFO = -3      ELSE IF( ICOMPQ.EQ.1 .AND. QSIZ.LT.N ) THEN         INFO = -4      ELSE IF( LDQ.LT.MAX( 1, N ) ) THEN         INFO = -7      ELSE IF( CUTPNT.LT.MIN( 1, N ) .OR. CUTPNT.GT.N ) THEN         INFO = -10      ELSE IF( LDQ2.LT.MAX( 1, N ) ) THEN         INFO = -14      END IF      IF( INFO.NE.0 ) THEN         CALL XERBLA( 'SLAED8', -INFO )         RETURN      END IF**     Quick return if possible*      IF( N.EQ.0 )     $   RETURN*      N1 = CUTPNT      N2 = N - N1      N1P1 = N1 + 1*      IF( RHO.LT.ZERO ) THEN         OPS = OPS + N2         CALL SSCAL( N2, MONE, Z( N1P1 ), 1 )      END IF**     Normalize z so that norm(z) = 1*      OPS = OPS + N + 6      T = ONE / SQRT( TWO )      DO 10 J = 1, N         INDX( J ) = J   10 CONTINUE      CALL SSCAL( N, T, Z, 1 )      RHO = ABS( TWO*RHO )**     Sort the eigenvalues into increasing order*      DO 20 I = CUTPNT + 1, N         INDXQ( I ) = INDXQ( I ) + CUTPNT   20 CONTINUE      DO 30 I = 1, N         DLAMDA( I ) = D( INDXQ( I ) )         W( I ) = Z( INDXQ( I ) )   30 CONTINUE      I = 1      J = CUTPNT + 1      CALL SLAMRG( N1, N2, DLAMDA, 1, 1, INDX )      DO 40 I = 1, N         D( I ) = DLAMDA( INDX( I ) )         Z( I ) = W( INDX( I ) )   40 CONTINUE**     Calculate the allowable deflation tolerence*      IMAX = ISAMAX( N, Z, 1 )      JMAX = ISAMAX( N, D, 1 )      EPS = SLAMCH( 'Epsilon' )      TOL = EIGHT*EPS*ABS( D( JMAX ) )**     If the rank-1 modifier is small enough, no more needs to be done*     except to reorganize Q so that its columns correspond with the*     elements in D.*      IF( RHO*ABS( Z( IMAX ) ).LE.TOL ) THEN         K = 0         IF( ICOMPQ.EQ.0 ) THEN            DO 50 J = 1, N               PERM( J ) = INDXQ( INDX( J ) )   50       CONTINUE         ELSE            DO 60 J = 1, N               PERM( J ) = INDXQ( INDX( J ) )               CALL SCOPY( QSIZ, Q( 1, PERM( J ) ), 1, Q2( 1, J ), 1 )   60       CONTINUE            CALL SLACPY( 'A', QSIZ, N, Q2( 1, 1 ), LDQ2, Q( 1, 1 ),     $                   LDQ )         END IF         RETURN      END IF**     If there are multiple eigenvalues then the problem deflates.  Here*     the number of equal eigenvalues are found.  As each equal*     eigenvalue is found, an elementary reflector is computed to rotate*     the corresponding eigensubspace so that the corresponding*     components of Z are zero in this new basis.*      K = 0      GIVPTR = 0      K2 = N + 1      DO 70 J = 1, N         OPS = OPS + 1         IF( RHO*ABS( Z( J ) ).LE.TOL ) THEN**           Deflate due to small z component.*            K2 = K2 - 1            INDXP( K2 ) = J            IF( J.EQ.N )     $         GO TO 110         ELSE            JLAM = J            GO TO 80         END IF   70 CONTINUE   80 CONTINUE      J = J + 1      IF( J.GT.N )     $   GO TO 100      OPS = OPS + 1      IF( RHO*ABS( Z( J ) ).LE.TOL ) THEN**        Deflate due to small z component.*         K2 = K2 - 1         INDXP( K2 ) = J      ELSE**        Check if eigenvalues are close enough to allow deflation.*         S = Z( JLAM )         C = Z( J )**        Find sqrt(a**2+b**2) without overflow or*        destructive underflow.*         OPS = OPS + 10         TAU = SLAPY2( C, S )         T = D( J ) - D( JLAM )         C = C / TAU         S = -S / TAU         IF( ABS( T*C*S ).LE.TOL ) THEN**           Deflation is possible.*            Z( J ) = TAU            Z( JLAM ) = ZERO**           Record the appropriate Givens rotation*            GIVPTR = GIVPTR + 1            GIVCOL( 1, GIVPTR ) = INDXQ( INDX( JLAM ) )            GIVCOL( 2, GIVPTR ) = INDXQ( INDX( J ) )            GIVNUM( 1, GIVPTR ) = C            GIVNUM( 2, GIVPTR ) = S            IF( ICOMPQ.EQ.1 ) THEN               OPS = OPS + 6*QSIZ               CALL SROT( QSIZ, Q( 1, INDXQ( INDX( JLAM ) ) ), 1,     $                    Q( 1, INDXQ( INDX( J ) ) ), 1, C, S )            END IF            OPS = OPS + 10            T = D( JLAM )*C*C + D( J )*S*S            D( J ) = D( JLAM )*S*S + D( J )*C*C            D( JLAM ) = T            K2 = K2 - 1            I = 1   90       CONTINUE            IF( K2+I.LE.N ) THEN               IF( D( JLAM ).LT.D( INDXP( K2+I ) ) ) THEN                  INDXP( K2+I-1 ) = INDXP( K2+I )                  INDXP( K2+I ) = JLAM                  I = I + 1                  GO TO 90               ELSE                  INDXP( K2+I-1 ) = JLAM               END IF            ELSE               INDXP( K2+I-1 ) = JLAM            END IF            JLAM = J         ELSE            K = K + 1            W( K ) = Z( JLAM )            DLAMDA( K ) = D( JLAM )            INDXP( K ) = JLAM            JLAM = J         END IF      END IF      GO TO 80  100 CONTINUE**     Record the last eigenvalue.*      K = K + 1      W( K ) = Z( JLAM )      DLAMDA( K ) = D( JLAM )      INDXP( K ) = JLAM*  110 CONTINUE**     Sort the eigenvalues and corresponding eigenvectors into DLAMDA*     and Q2 respectively.  The eigenvalues/vectors which were not*     deflated go into the first K slots of DLAMDA and Q2 respectively,*     while those which were deflated go into the last N - K slots.*      IF( ICOMPQ.EQ.0 ) THEN         DO 120 J = 1, N            JP = INDXP( J )            DLAMDA( J ) = D( JP )            PERM( J ) = INDXQ( INDX( JP ) )  120    CONTINUE      ELSE         DO 130 J = 1, N            JP = INDXP( J )            DLAMDA( J ) = D( JP )            PERM( J ) = INDXQ( INDX( JP ) )            CALL SCOPY( QSIZ, Q( 1, PERM( J ) ), 1, Q2( 1, J ), 1 )  130    CONTINUE      END IF**     The deflated eigenvalues and their corresponding vectors go back*     into the last N - K slots of D and Q respectively.*      IF( K.LT.N ) THEN         IF( ICOMPQ.EQ.0 ) THEN            CALL SCOPY( N-K, DLAMDA( K+1 ), 1, D( K+1 ), 1 )         ELSE            CALL SCOPY( N-K, DLAMDA( K+1 ), 1, D( K+1 ), 1 )            CALL SLACPY( 'A', QSIZ, N-K, Q2( 1, K+1 ), LDQ2,     $                   Q( 1, K+1 ), LDQ )         END IF      END IF*      RETURN**     End of SLAED8*      END

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -