⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 slaebz.f

📁 计算矩阵的经典开源库.全世界都在用它.相信你也不能例外.
💻 F
📖 第 1 页 / 共 2 页
字号:
      SUBROUTINE SLAEBZ( IJOB, NITMAX, N, MMAX, MINP, NBMIN, ABSTOL,     $                   RELTOL, PIVMIN, D, E, E2, NVAL, AB, C, MOUT,     $                   NAB, WORK, IWORK, INFO )**  -- LAPACK auxiliary routine (instrum. to count ops. version 3.0) --*     Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,*     Courant Institute, Argonne National Lab, and Rice University*     June 30, 1999**     .. Scalar Arguments ..      INTEGER            IJOB, INFO, MINP, MMAX, MOUT, N, NBMIN, NITMAX      REAL               ABSTOL, PIVMIN, RELTOL*     ..*     .. Array Arguments ..      INTEGER            IWORK( * ), NAB( MMAX, * ), NVAL( * )      REAL               AB( MMAX, * ), C( * ), D( * ), E( * ), E2( * ),     $                   WORK( * )*     ..*     Common block to return operation count and iteration count*     ITCNT and OPS are only incremented (not initialized)*     .. Common blocks ..      COMMON             / LATIME / OPS, ITCNT*     ..*     .. Scalars in Common ..      REAL               ITCNT, OPS*     ..*-----------------------------------------------------------------------**  Purpose*  =======**  SLAEBZ contains the iteration loops which compute and use the*  function N(w), which is the count of eigenvalues of a symmetric*  tridiagonal matrix T less than or equal to its argument  w.  It*  performs a choice of two types of loops:**  IJOB=1, followed by*  IJOB=2: It takes as input a list of intervals and returns a list of*          sufficiently small intervals whose union contains the same*          eigenvalues as the union of the original intervals.*          The input intervals are (AB(j,1),AB(j,2)], j=1,...,MINP.*          The output interval (AB(j,1),AB(j,2)] will contain*          eigenvalues NAB(j,1)+1,...,NAB(j,2), where 1 <= j <= MOUT.**  IJOB=3: It performs a binary search in each input interval*          (AB(j,1),AB(j,2)] for a point  w(j)  such that*          N(w(j))=NVAL(j), and uses  C(j)  as the starting point of*          the search.  If such a w(j) is found, then on output*          AB(j,1)=AB(j,2)=w.  If no such w(j) is found, then on output*          (AB(j,1),AB(j,2)] will be a small interval containing the*          point where N(w) jumps through NVAL(j), unless that point*          lies outside the initial interval.**  Note that the intervals are in all cases half-open intervals,*  i.e., of the form  (a,b] , which includes  b  but not  a .**  To avoid underflow, the matrix should be scaled so that its largest*  element is no greater than  overflow**(1/2) * underflow**(1/4)*  in absolute value.  To assure the most accurate computation*  of small eigenvalues, the matrix should be scaled to be*  not much smaller than that, either.**  See W. Kahan "Accurate Eigenvalues of a Symmetric Tridiagonal*  Matrix", Report CS41, Computer Science Dept., Stanford*  University, July 21, 1966**  Note: the arguments are, in general, *not* checked for unreasonable*  values.**  Arguments*  =========**  IJOB    (input) INTEGER*          Specifies what is to be done:*          = 1:  Compute NAB for the initial intervals.*          = 2:  Perform bisection iteration to find eigenvalues of T.*          = 3:  Perform bisection iteration to invert N(w), i.e.,*                to find a point which has a specified number of*                eigenvalues of T to its left.*          Other values will cause SLAEBZ to return with INFO=-1.**  NITMAX  (input) INTEGER*          The maximum number of "levels" of bisection to be*          performed, i.e., an interval of width W will not be made*          smaller than 2^(-NITMAX) * W.  If not all intervals*          have converged after NITMAX iterations, then INFO is set*          to the number of non-converged intervals.**  N       (input) INTEGER*          The dimension n of the tridiagonal matrix T.  It must be at*          least 1.**  MMAX    (input) INTEGER*          The maximum number of intervals.  If more than MMAX intervals*          are generated, then SLAEBZ will quit with INFO=MMAX+1.**  MINP    (input) INTEGER*          The initial number of intervals.  It may not be greater than*          MMAX.**  NBMIN   (input) INTEGER*          The smallest number of intervals that should be processed*          using a vector loop.  If zero, then only the scalar loop*          will be used.**  ABSTOL  (input) REAL*          The minimum (absolute) width of an interval.  When an*          interval is narrower than ABSTOL, or than RELTOL times the*          larger (in magnitude) endpoint, then it is considered to be*          sufficiently small, i.e., converged.  This must be at least*          zero.**  RELTOL  (input) REAL*          The minimum relative width of an interval.  When an interval*          is narrower than ABSTOL, or than RELTOL times the larger (in*          magnitude) endpoint, then it is considered to be*          sufficiently small, i.e., converged.  Note: this should*          always be at least radix*machine epsilon.**  PIVMIN  (input) REAL*          The minimum absolute value of a "pivot" in the Sturm*          sequence loop.  This *must* be at least  max |e(j)**2| **          safe_min  and at least safe_min, where safe_min is at least*          the smallest number that can divide one without overflow.**  D       (input) REAL array, dimension (N)*          The diagonal elements of the tridiagonal matrix T.**  E       (input) REAL array, dimension (N)*          The offdiagonal elements of the tridiagonal matrix T in*          positions 1 through N-1.  E(N) is arbitrary.**  E2      (input) REAL array, dimension (N)*          The squares of the offdiagonal elements of the tridiagonal*          matrix T.  E2(N) is ignored.**  NVAL    (input/output) INTEGER array, dimension (MINP)*          If IJOB=1 or 2, not referenced.*          If IJOB=3, the desired values of N(w).  The elements of NVAL*          will be reordered to correspond with the intervals in AB.*          Thus, NVAL(j) on output will not, in general be the same as*          NVAL(j) on input, but it will correspond with the interval*          (AB(j,1),AB(j,2)] on output.**  AB      (input/output) REAL array, dimension (MMAX,2)*          The endpoints of the intervals.  AB(j,1) is  a(j), the left*          endpoint of the j-th interval, and AB(j,2) is b(j), the*          right endpoint of the j-th interval.  The input intervals*          will, in general, be modified, split, and reordered by the*          calculation.**  C       (input/output) REAL array, dimension (MMAX)*          If IJOB=1, ignored.*          If IJOB=2, workspace.*          If IJOB=3, then on input C(j) should be initialized to the*          first search point in the binary search.**  MOUT    (output) INTEGER*          If IJOB=1, the number of eigenvalues in the intervals.*          If IJOB=2 or 3, the number of intervals output.*          If IJOB=3, MOUT will equal MINP.**  NAB     (input/output) INTEGER array, dimension (MMAX,2)*          If IJOB=1, then on output NAB(i,j) will be set to N(AB(i,j)).*          If IJOB=2, then on input, NAB(i,j) should be set.  It must*             satisfy the condition:*             N(AB(i,1)) <= NAB(i,1) <= NAB(i,2) <= N(AB(i,2)),*             which means that in interval i only eigenvalues*             NAB(i,1)+1,...,NAB(i,2) will be considered.  Usually,*             NAB(i,j)=N(AB(i,j)), from a previous call to SLAEBZ with*             IJOB=1.*             On output, NAB(i,j) will contain*             max(na(k),min(nb(k),N(AB(i,j)))), where k is the index of*             the input interval that the output interval*             (AB(j,1),AB(j,2)] came from, and na(k) and nb(k) are the*             the input values of NAB(k,1) and NAB(k,2).*          If IJOB=3, then on output, NAB(i,j) contains N(AB(i,j)),*             unless N(w) > NVAL(i) for all search points  w , in which*             case NAB(i,1) will not be modified, i.e., the output*             value will be the same as the input value (modulo*             reorderings -- see NVAL and AB), or unless N(w) < NVAL(i)*             for all search points  w , in which case NAB(i,2) will*             not be modified.  Normally, NAB should be set to some*             distinctive value(s) before SLAEBZ is called.**  WORK    (workspace) REAL array, dimension (MMAX)*          Workspace.**  IWORK   (workspace) INTEGER array, dimension (MMAX)*          Workspace.**  INFO    (output) INTEGER*          = 0:       All intervals converged.*          = 1--MMAX: The last INFO intervals did not converge.*          = MMAX+1:  More than MMAX intervals were generated.**  Further Details*  ===============**      This routine is intended to be called only by other LAPACK*  routines, thus the interface is less user-friendly.  It is intended*  for two purposes:**  (a) finding eigenvalues.  In this case, SLAEBZ should have one or*      more initial intervals set up in AB, and SLAEBZ should be called*      with IJOB=1.  This sets up NAB, and also counts the eigenvalues.*      Intervals with no eigenvalues would usually be thrown out at*      this point.  Also, if not all the eigenvalues in an interval i*      are desired, NAB(i,1) can be increased or NAB(i,2) decreased.*      For example, set NAB(i,1)=NAB(i,2)-1 to get the largest*      eigenvalue.  SLAEBZ is then called with IJOB=2 and MMAX*      no smaller than the value of MOUT returned by the call with*      IJOB=1.  After this (IJOB=2) call, eigenvalues NAB(i,1)+1*      through NAB(i,2) are approximately AB(i,1) (or AB(i,2)) to the*      tolerance specified by ABSTOL and RELTOL.**  (b) finding an interval (a',b'] containing eigenvalues w(f),...,w(l).*      In this case, start with a Gershgorin interval  (a,b).  Set up*      AB to contain 2 search intervals, both initially (a,b).  One*      NVAL element should contain  f-1  and the other should contain  l*      , while C should contain a and b, resp.  NAB(i,1) should be -1*      and NAB(i,2) should be N+1, to flag an error if the desired*      interval does not lie in (a,b).  SLAEBZ is then called with*      IJOB=3.  On exit, if w(f-1) < w(f), then one of the intervals --*      j -- will have AB(j,1)=AB(j,2) and NAB(j,1)=NAB(j,2)=f-1, while*      if, to the specified tolerance, w(f-k)=...=w(f+r), k > 0 and r*      >= 0, then the interval will have  N(AB(j,1))=NAB(j,1)=f-k and*      N(AB(j,2))=NAB(j,2)=f+r.  The cases w(l) < w(l+1) and*      w(l-r)=...=w(l+k) are handled similarly.**  =====================================================================**     .. Parameters ..      REAL               ZERO, TWO, HALF      PARAMETER          ( ZERO = 0.0E0, TWO = 2.0E0,     $                   HALF = 1.0E0 / TWO )*     ..*     .. Local Scalars ..      INTEGER            ITMP1, ITMP2, J, JI, JIT, JP, KF, KFNEW, KL,     $                   KLNEW      REAL               TMP1, TMP2*     ..*     .. Intrinsic Functions ..      INTRINSIC          ABS, MAX, MIN*     ..*     .. Executable Statements ..**     Check for Errors*      INFO = 0      IF( IJOB.LT.1 .OR. IJOB.GT.3 ) THEN         INFO = -1         RETURN      END IF**     Initialize NAB*      IF( IJOB.EQ.1 ) THEN**        Compute the number of eigenvalues in the initial intervals.*         MOUT = 0CDIR$ NOVECTOR         DO 30 JI = 1, MINP            DO 20 JP = 1, 2               TMP1 = D( 1 ) - AB( JI, JP )               IF( ABS( TMP1 ).LT.PIVMIN )     $            TMP1 = -PIVMIN               NAB( JI, JP ) = 0               IF( TMP1.LE.ZERO )     $            NAB( JI, JP ) = 1*               DO 10 J = 2, N                  TMP1 = D( J ) - E2( J-1 ) / TMP1 - AB( JI, JP )                  IF( ABS( TMP1 ).LT.PIVMIN )     $               TMP1 = -PIVMIN                  IF( TMP1.LE.ZERO )     $               NAB( JI, JP ) = NAB( JI, JP ) + 1   10          CONTINUE   20       CONTINUE            MOUT = MOUT + NAB( JI, 2 ) - NAB( JI, 1 )   30    CONTINUE**        Increment opcount for determining the number of eigenvalues*        in the initial intervals.*         OPS = OPS + MINP*2*( N-1 )*3         RETURN      END IF**     Initialize for loop**     KF and KL have the following meaning:*        Intervals 1,...,KF-1 have converged.*        Intervals KF,...,KL  still need to be refined.*      KF = 1

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -