📄 slaed1.f
字号:
SUBROUTINE SLAED1( N, D, Q, LDQ, INDXQ, RHO, CUTPNT, WORK, IWORK, $ INFO )** -- LAPACK routine (instrumented to count operations, version 3.0) --* Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,* Courant Institute, Argonne National Lab, and Rice University* June 30, 1999** .. Scalar Arguments .. INTEGER CUTPNT, INFO, LDQ, N REAL RHO* ..* .. Array Arguments .. INTEGER INDXQ( * ), IWORK( * ) REAL D( * ), Q( LDQ, * ), WORK( * )* ..* Common block to return operation count and iteration count* ITCNT is unchanged, OPS is only incremented* .. Common blocks .. COMMON / LATIME / OPS, ITCNT* ..* .. Scalars in Common .. REAL ITCNT, OPS* ..** Purpose* =======** SLAED1 computes the updated eigensystem of a diagonal* matrix after modification by a rank-one symmetric matrix. This* routine is used only for the eigenproblem which requires all* eigenvalues and eigenvectors of a tridiagonal matrix. SLAED7 handles* the case in which eigenvalues only or eigenvalues and eigenvectors* of a full symmetric matrix (which was reduced to tridiagonal form)* are desired.** T = Q(in) ( D(in) + RHO * Z*Z' ) Q'(in) = Q(out) * D(out) * Q'(out)** where Z = Q'u, u is a vector of length N with ones in the* CUTPNT and CUTPNT + 1 th elements and zeros elsewhere.** The eigenvectors of the original matrix are stored in Q, and the* eigenvalues are in D. The algorithm consists of three stages:** The first stage consists of deflating the size of the problem* when there are multiple eigenvalues or if there is a zero in* the Z vector. For each such occurence the dimension of the* secular equation problem is reduced by one. This stage is* performed by the routine SLAED2.** The second stage consists of calculating the updated* eigenvalues. This is done by finding the roots of the secular* equation via the routine SLAED4 (as called by SLAED3).* This routine also calculates the eigenvectors of the current* problem.** The final stage consists of computing the updated eigenvectors* directly using the updated eigenvalues. The eigenvectors for* the current problem are multiplied with the eigenvectors from* the overall problem.** Arguments* =========** N (input) INTEGER* The dimension of the symmetric tridiagonal matrix. N >= 0.** D (input/output) REAL array, dimension (N)* On entry, the eigenvalues of the rank-1-perturbed matrix.* On exit, the eigenvalues of the repaired matrix.** Q (input/output) REAL array, dimension (LDQ,N)* On entry, the eigenvectors of the rank-1-perturbed matrix.* On exit, the eigenvectors of the repaired tridiagonal matrix.** LDQ (input) INTEGER* The leading dimension of the array Q. LDQ >= max(1,N).** INDXQ (input/output) INTEGER array, dimension (N)* On entry, the permutation which separately sorts the two* subproblems in D into ascending order.* On exit, the permutation which will reintegrate the* subproblems back into sorted order,* i.e. D( INDXQ( I = 1, N ) ) will be in ascending order.** RHO (input) REAL* The subdiagonal entry used to create the rank-1 modification.** CUTPNT (input) INTEGER* The location of the last eigenvalue in the leading sub-matrix.* min(1,N) <= CUTPNT <= N/2.** WORK (workspace) REAL array, dimension (4*N + N**2)** IWORK (workspace) INTEGER array, dimension (4*N)** INFO (output) INTEGER* = 0: successful exit.* < 0: if INFO = -i, the i-th argument had an illegal value.* > 0: if INFO = 1, an eigenvalue did not converge** Further Details* ===============** Based on contributions by* Jeff Rutter, Computer Science Division, University of California* at Berkeley, USA* Modified by Francoise Tisseur, University of Tennessee.** =====================================================================** .. Local Scalars .. INTEGER COLTYP, CPP1, I, IDLMDA, INDX, INDXC, INDXP, $ IQ2, IS, IW, IZ, K, N1, N2* ..* .. External Subroutines .. EXTERNAL SCOPY, SLAED2, SLAED3, SLAMRG, XERBLA* ..* .. Intrinsic Functions .. INTRINSIC MAX, MIN* ..* .. Executable Statements ..** Test the input parameters.* INFO = 0* IF( N.LT.0 ) THEN INFO = -1 ELSE IF( LDQ.LT.MAX( 1, N ) ) THEN INFO = -4 ELSE IF( MIN( 1, N / 2 ).GT.CUTPNT .OR. ( N / 2 ).LT.CUTPNT ) THEN INFO = -7 END IF IF( INFO.NE.0 ) THEN CALL XERBLA( 'SLAED1', -INFO ) RETURN END IF** Quick return if possible* IF( N.EQ.0 ) $ RETURN** The following values are integer pointers which indicate* the portion of the workspace* used by a particular array in SLAED2 and SLAED3.* IZ = 1 IDLMDA = IZ + N IW = IDLMDA + N IQ2 = IW + N* INDX = 1 INDXC = INDX + N COLTYP = INDXC + N INDXP = COLTYP + N*** Form the z-vector which consists of the last row of Q_1 and the* first row of Q_2.* CALL SCOPY( CUTPNT, Q( CUTPNT, 1 ), LDQ, WORK( IZ ), 1 ) CPP1 = CUTPNT + 1 CALL SCOPY( N-CUTPNT, Q( CPP1, CPP1 ), LDQ, WORK( IZ+CUTPNT ), 1 )** Deflate eigenvalues.* CALL SLAED2( K, N, CUTPNT, D, Q, LDQ, INDXQ, RHO, WORK( IZ ), $ WORK( IDLMDA ), WORK( IW ), WORK( IQ2 ), $ IWORK( INDX ), IWORK( INDXC ), IWORK( INDXP ), $ IWORK( COLTYP ), INFO )* IF( INFO.NE.0 ) $ GO TO 20** Solve Secular Equation.* IF( K.NE.0 ) THEN IS = ( IWORK( COLTYP )+IWORK( COLTYP+1 ) )*CUTPNT + $ ( IWORK( COLTYP+1 )+IWORK( COLTYP+2 ) )*( N-CUTPNT ) + IQ2 CALL SLAED3( K, N, CUTPNT, D, Q, LDQ, RHO, WORK( IDLMDA ), $ WORK( IQ2 ), IWORK( INDXC ), IWORK( COLTYP ), $ WORK( IW ), WORK( IS ), INFO ) IF( INFO.NE.0 ) $ GO TO 20** Prepare the INDXQ sorting permutation.* N1 = K N2 = N - K CALL SLAMRG( N1, N2, D, 1, -1, INDXQ ) ELSE DO 10 I = 1, N INDXQ( I ) = I 10 CONTINUE END IF* 20 CONTINUE RETURN** End of SLAED1* END
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -