⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 slaed1.f

📁 计算矩阵的经典开源库.全世界都在用它.相信你也不能例外.
💻 F
字号:
      SUBROUTINE SLAED1( N, D, Q, LDQ, INDXQ, RHO, CUTPNT, WORK, IWORK,     $                   INFO )**  -- LAPACK routine (instrumented to count operations, version 3.0) --*     Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,*     Courant Institute, Argonne National Lab, and Rice University*     June 30, 1999**     .. Scalar Arguments ..      INTEGER            CUTPNT, INFO, LDQ, N      REAL               RHO*     ..*     .. Array Arguments ..      INTEGER            INDXQ( * ), IWORK( * )      REAL               D( * ), Q( LDQ, * ), WORK( * )*     ..*     Common block to return operation count and iteration count*     ITCNT is unchanged, OPS is only incremented*     .. Common blocks ..      COMMON             / LATIME / OPS, ITCNT*     ..*     .. Scalars in Common ..      REAL               ITCNT, OPS*     ..**  Purpose*  =======**  SLAED1 computes the updated eigensystem of a diagonal*  matrix after modification by a rank-one symmetric matrix.  This*  routine is used only for the eigenproblem which requires all*  eigenvalues and eigenvectors of a tridiagonal matrix.  SLAED7 handles*  the case in which eigenvalues only or eigenvalues and eigenvectors*  of a full symmetric matrix (which was reduced to tridiagonal form)*  are desired.**    T = Q(in) ( D(in) + RHO * Z*Z' ) Q'(in) = Q(out) * D(out) * Q'(out)**     where Z = Q'u, u is a vector of length N with ones in the*     CUTPNT and CUTPNT + 1 th elements and zeros elsewhere.**     The eigenvectors of the original matrix are stored in Q, and the*     eigenvalues are in D.  The algorithm consists of three stages:**        The first stage consists of deflating the size of the problem*        when there are multiple eigenvalues or if there is a zero in*        the Z vector.  For each such occurence the dimension of the*        secular equation problem is reduced by one.  This stage is*        performed by the routine SLAED2.**        The second stage consists of calculating the updated*        eigenvalues. This is done by finding the roots of the secular*        equation via the routine SLAED4 (as called by SLAED3).*        This routine also calculates the eigenvectors of the current*        problem.**        The final stage consists of computing the updated eigenvectors*        directly using the updated eigenvalues.  The eigenvectors for*        the current problem are multiplied with the eigenvectors from*        the overall problem.**  Arguments*  =========**  N      (input) INTEGER*         The dimension of the symmetric tridiagonal matrix.  N >= 0.**  D      (input/output) REAL array, dimension (N)*         On entry, the eigenvalues of the rank-1-perturbed matrix.*         On exit, the eigenvalues of the repaired matrix.**  Q      (input/output) REAL array, dimension (LDQ,N)*         On entry, the eigenvectors of the rank-1-perturbed matrix.*         On exit, the eigenvectors of the repaired tridiagonal matrix.**  LDQ    (input) INTEGER*         The leading dimension of the array Q.  LDQ >= max(1,N).**  INDXQ  (input/output) INTEGER array, dimension (N)*         On entry, the permutation which separately sorts the two*         subproblems in D into ascending order.*         On exit, the permutation which will reintegrate the*         subproblems back into sorted order,*         i.e. D( INDXQ( I = 1, N ) ) will be in ascending order.**  RHO    (input) REAL*         The subdiagonal entry used to create the rank-1 modification.**  CUTPNT (input) INTEGER*         The location of the last eigenvalue in the leading sub-matrix.*         min(1,N) <= CUTPNT <= N/2.**  WORK   (workspace) REAL array, dimension (4*N + N**2)**  IWORK  (workspace) INTEGER array, dimension (4*N)**  INFO   (output) INTEGER*          = 0:  successful exit.*          < 0:  if INFO = -i, the i-th argument had an illegal value.*          > 0:  if INFO = 1, an eigenvalue did not converge**  Further Details*  ===============**  Based on contributions by*     Jeff Rutter, Computer Science Division, University of California*     at Berkeley, USA*  Modified by Francoise Tisseur, University of Tennessee.**  =====================================================================**     .. Local Scalars ..      INTEGER            COLTYP, CPP1, I, IDLMDA, INDX, INDXC, INDXP,     $                   IQ2, IS, IW, IZ, K, N1, N2*     ..*     .. External Subroutines ..      EXTERNAL           SCOPY, SLAED2, SLAED3, SLAMRG, XERBLA*     ..*     .. Intrinsic Functions ..      INTRINSIC          MAX, MIN*     ..*     .. Executable Statements ..**     Test the input parameters.*      INFO = 0*      IF( N.LT.0 ) THEN         INFO = -1      ELSE IF( LDQ.LT.MAX( 1, N ) ) THEN         INFO = -4      ELSE IF( MIN( 1, N / 2 ).GT.CUTPNT .OR. ( N / 2 ).LT.CUTPNT ) THEN         INFO = -7      END IF      IF( INFO.NE.0 ) THEN         CALL XERBLA( 'SLAED1', -INFO )         RETURN      END IF**     Quick return if possible*      IF( N.EQ.0 )     $   RETURN**     The following values are integer pointers which indicate*     the portion of the workspace*     used by a particular array in SLAED2 and SLAED3.*      IZ = 1      IDLMDA = IZ + N      IW = IDLMDA + N      IQ2 = IW + N*      INDX = 1      INDXC = INDX + N      COLTYP = INDXC + N      INDXP = COLTYP + N***     Form the z-vector which consists of the last row of Q_1 and the*     first row of Q_2.*      CALL SCOPY( CUTPNT, Q( CUTPNT, 1 ), LDQ, WORK( IZ ), 1 )      CPP1 = CUTPNT + 1      CALL SCOPY( N-CUTPNT, Q( CPP1, CPP1 ), LDQ, WORK( IZ+CUTPNT ), 1 )**     Deflate eigenvalues.*      CALL SLAED2( K, N, CUTPNT, D, Q, LDQ, INDXQ, RHO, WORK( IZ ),     $             WORK( IDLMDA ), WORK( IW ), WORK( IQ2 ),     $             IWORK( INDX ), IWORK( INDXC ), IWORK( INDXP ),     $             IWORK( COLTYP ), INFO )*      IF( INFO.NE.0 )     $   GO TO 20**     Solve Secular Equation.*      IF( K.NE.0 ) THEN         IS = ( IWORK( COLTYP )+IWORK( COLTYP+1 ) )*CUTPNT +     $        ( IWORK( COLTYP+1 )+IWORK( COLTYP+2 ) )*( N-CUTPNT ) + IQ2         CALL SLAED3( K, N, CUTPNT, D, Q, LDQ, RHO, WORK( IDLMDA ),     $                WORK( IQ2 ), IWORK( INDXC ), IWORK( COLTYP ),     $                WORK( IW ), WORK( IS ), INFO )         IF( INFO.NE.0 )     $      GO TO 20**     Prepare the INDXQ sorting permutation.*         N1 = K         N2 = N - K         CALL SLAMRG( N1, N2, D, 1, -1, INDXQ )      ELSE         DO 10 I = 1, N            INDXQ( I ) = I   10    CONTINUE      END IF*   20 CONTINUE      RETURN**     End of SLAED1*      END

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -