📄 claed8.f
字号:
SUBROUTINE CLAED8( K, N, QSIZ, Q, LDQ, D, RHO, CUTPNT, Z, DLAMDA, $ Q2, LDQ2, W, INDXP, INDX, INDXQ, PERM, GIVPTR, $ GIVCOL, GIVNUM, INFO )** -- LAPACK routine (instrumented to count operations, version 3.0) --* Univ. of Tennessee, Oak Ridge National Lab, Argonne National Lab,* Courant Institute, NAG Ltd., and Rice University* September 30, 1994** .. Scalar Arguments .. INTEGER CUTPNT, GIVPTR, INFO, K, LDQ, LDQ2, N, QSIZ REAL RHO* ..* .. Array Arguments .. INTEGER GIVCOL( 2, * ), INDX( * ), INDXP( * ), $ INDXQ( * ), PERM( * ) REAL D( * ), DLAMDA( * ), GIVNUM( 2, * ), W( * ), $ Z( * ) COMPLEX Q( LDQ, * ), Q2( LDQ2, * )* ..* Common block to return operation count and iteration count* ITCNT is unchanged, OPS is only incremented* .. Common blocks .. COMMON / LATIME / OPS, ITCNT* ..* .. Scalars in Common .. REAL ITCNT, OPS* ..** Purpose* =======** CLAED8 merges the two sets of eigenvalues together into a single* sorted set. Then it tries to deflate the size of the problem.* There are two ways in which deflation can occur: when two or more* eigenvalues are close together or if there is a tiny element in the* Z vector. For each such occurrence the order of the related secular* equation problem is reduced by one.** Arguments* =========** K (output) INTEGER* Contains the number of non-deflated eigenvalues.* This is the order of the related secular equation.** N (input) INTEGER* The dimension of the symmetric tridiagonal matrix. N >= 0.** QSIZ (input) INTEGER* The dimension of the unitary matrix used to reduce* the dense or band matrix to tridiagonal form.* QSIZ >= N if ICOMPQ = 1.** Q (input/output) COMPLEX array, dimension (LDQ,N)* On entry, Q contains the eigenvectors of the partially solved* system which has been previously updated in matrix* multiplies with other partially solved eigensystems.* On exit, Q contains the trailing (N-K) updated eigenvectors* (those which were deflated) in its last N-K columns.** LDQ (input) INTEGER* The leading dimension of the array Q. LDQ >= max( 1, N ).** D (input/output) REAL array, dimension (N)* On entry, D contains the eigenvalues of the two submatrices to* be combined. On exit, D contains the trailing (N-K) updated* eigenvalues (those which were deflated) sorted into increasing* order.** RHO (input/output) REAL* Contains the off diagonal element associated with the rank-1* cut which originally split the two submatrices which are now* being recombined. RHO is modified during the computation to* the value required by SLAED3.** CUTPNT (input) INTEGER* Contains the location of the last eigenvalue in the leading* sub-matrix. MIN(1,N) <= CUTPNT <= N.** Z (input) REAL array, dimension (N)* On input this vector contains the updating vector (the last* row of the first sub-eigenvector matrix and the first row of* the second sub-eigenvector matrix). The contents of Z are* destroyed during the updating process.** DLAMDA (output) REAL array, dimension (N)* Contains a copy of the first K eigenvalues which will be used* by SLAED3 to form the secular equation.** Q2 (output) COMPLEX array, dimension (LDQ2,N)* If ICOMPQ = 0, Q2 is not referenced. Otherwise,* Contains a copy of the first K eigenvectors which will be used* by SLAED7 in a matrix multiply (SGEMM) to update the new* eigenvectors.** LDQ2 (input) INTEGER* The leading dimension of the array Q2. LDQ2 >= max( 1, N ).** W (output) REAL array, dimension (N)* This will hold the first k values of the final* deflation-altered z-vector and will be passed to SLAED3.** INDXP (workspace) INTEGER array, dimension (N)* This will contain the permutation used to place deflated* values of D at the end of the array. On output INDXP(1:K)* points to the nondeflated D-values and INDXP(K+1:N)* points to the deflated eigenvalues.** INDX (workspace) INTEGER array, dimension (N)* This will contain the permutation used to sort the contents of* D into ascending order.** INDXQ (input) INTEGER array, dimension (N)* This contains the permutation which separately sorts the two* sub-problems in D into ascending order. Note that elements in* the second half of this permutation must first have CUTPNT* added to their values in order to be accurate.** PERM (output) INTEGER array, dimension (N)* Contains the permutations (from deflation and sorting) to be* applied to each eigenblock.** GIVPTR (output) INTEGER* Contains the number of Givens rotations which took place in* this subproblem.** GIVCOL (output) INTEGER array, dimension (2, N)* Each pair of numbers indicates a pair of columns to take place* in a Givens rotation.** GIVNUM (output) REAL array, dimension (2, N)* Each number indicates the S value to be used in the* corresponding Givens rotation.** INFO (output) INTEGER* = 0: successful exit.* < 0: if INFO = -i, the i-th argument had an illegal value.** =====================================================================** .. Parameters .. REAL MONE, ZERO, ONE, TWO, EIGHT PARAMETER ( MONE = -1.0E0, ZERO = 0.0E0, ONE = 1.0E0, $ TWO = 2.0E0, EIGHT = 8.0E0 )* ..* .. Local Scalars ..* INTEGER I, IMAX, J, JLAM, JMAX, JP, K2, N1, N1P1, N2 REAL C, EPS, S, T, TAU, TOL* ..* .. External Functions .. INTEGER ISAMAX REAL SLAMCH, SLAPY2 EXTERNAL ISAMAX, SLAMCH, SLAPY2* ..* .. External Subroutines .. EXTERNAL CCOPY, CLACPY, CSROT, SCOPY, SLAMRG, SSCAL, $ XERBLA* ..* .. Intrinsic Functions .. INTRINSIC ABS, MAX, MIN, SQRT* ..* .. Executable Statements ..** Test the input parameters.* INFO = 0* IF( N.LT.0 ) THEN INFO = -2 ELSE IF( QSIZ.LT.N ) THEN INFO = -3 ELSE IF( LDQ.LT.MAX( 1, N ) ) THEN INFO = -5 ELSE IF( CUTPNT.LT.MIN( 1, N ) .OR. CUTPNT.GT.N ) THEN INFO = -8 ELSE IF( LDQ2.LT.MAX( 1, N ) ) THEN INFO = -12 END IF IF( INFO.NE.0 ) THEN CALL XERBLA( 'CLAED8', -INFO ) RETURN END IF** Quick return if possible* IF( N.EQ.0 ) $ RETURN* N1 = CUTPNT N2 = N - N1 N1P1 = N1 + 1* IF( RHO.LT.ZERO ) THEN OPS = OPS + N2 CALL SSCAL( N2, MONE, Z( N1P1 ), 1 ) END IF** Normalize z so that norm(z) = 1* OPS = OPS + N + 6 T = ONE / SQRT( TWO ) DO 10 J = 1, N INDX( J ) = J 10 CONTINUE CALL SSCAL( N, T, Z, 1 ) RHO = ABS( TWO*RHO )** Sort the eigenvalues into increasing order* DO 20 I = CUTPNT + 1, N INDXQ( I ) = INDXQ( I ) + CUTPNT 20 CONTINUE DO 30 I = 1, N DLAMDA( I ) = D( INDXQ( I ) ) W( I ) = Z( INDXQ( I ) ) 30 CONTINUE I = 1 J = CUTPNT + 1 CALL SLAMRG( N1, N2, DLAMDA, 1, 1, INDX ) DO 40 I = 1, N D( I ) = DLAMDA( INDX( I ) ) Z( I ) = W( INDX( I ) ) 40 CONTINUE** Calculate the allowable deflation tolerance* IMAX = ISAMAX( N, Z, 1 ) JMAX = ISAMAX( N, D, 1 ) EPS = SLAMCH( 'Epsilon' ) TOL = EIGHT*EPS*ABS( D( JMAX ) )** If the rank-1 modifier is small enough, no more needs to be done -* except to reorganize Q so that its columns correspond with the* elements in D.* IF( RHO*ABS( Z( IMAX ) ).LE.TOL ) THEN K = 0 DO 50 J = 1, N PERM( J ) = INDXQ( INDX( J ) ) CALL CCOPY( QSIZ, Q( 1, PERM( J ) ), 1, Q2( 1, J ), 1 ) 50 CONTINUE CALL CLACPY( 'A', QSIZ, N, Q2( 1, 1 ), LDQ2, Q( 1, 1 ), LDQ ) RETURN END IF** If there are multiple eigenvalues then the problem deflates. Here* the number of equal eigenvalues are found. As each equal* eigenvalue is found, an elementary reflector is computed to rotate* the corresponding eigensubspace so that the corresponding* components of Z are zero in this new basis.* K = 0 GIVPTR = 0 K2 = N + 1 DO 60 J = 1, N OPS = OPS + 1 IF( RHO*ABS( Z( J ) ).LE.TOL ) THEN** Deflate due to small z component.* K2 = K2 - 1 INDXP( K2 ) = J IF( J.EQ.N ) $ GO TO 100 ELSE JLAM = J GO TO 70 END IF 60 CONTINUE 70 CONTINUE J = J + 1 IF( J.GT.N ) $ GO TO 90 OPS = OPS + 1 IF( RHO*ABS( Z( J ) ).LE.TOL ) THEN** Deflate due to small z component.* K2 = K2 - 1 INDXP( K2 ) = J ELSE** Check if eigenvalues are close enough to allow deflation.* S = Z( JLAM ) C = Z( J )** Find sqrt(a**2+b**2) without overflow or* destructive underflow.* OPS = OPS + 10 TAU = SLAPY2( C, S ) T = D( J ) - D( JLAM ) C = C / TAU S = -S / TAU IF( ABS( T*C*S ).LE.TOL ) THEN** Deflation is possible.* Z( J ) = TAU Z( JLAM ) = ZERO** Record the appropriate Givens rotation* GIVPTR = GIVPTR + 1 GIVCOL( 1, GIVPTR ) = INDXQ( INDX( JLAM ) ) GIVCOL( 2, GIVPTR ) = INDXQ( INDX( J ) ) GIVNUM( 1, GIVPTR ) = C GIVNUM( 2, GIVPTR ) = S OPS = OPS + 12*QSIZ CALL CSROT( QSIZ, Q( 1, INDXQ( INDX( JLAM ) ) ), 1, $ Q( 1, INDXQ( INDX( J ) ) ), 1, C, S ) OPS = OPS + 10 T = D( JLAM )*C*C + D( J )*S*S D( J ) = D( JLAM )*S*S + D( J )*C*C D( JLAM ) = T K2 = K2 - 1 I = 1 80 CONTINUE IF( K2+I.LE.N ) THEN IF( D( JLAM ).LT.D( INDXP( K2+I ) ) ) THEN INDXP( K2+I-1 ) = INDXP( K2+I ) INDXP( K2+I ) = JLAM I = I + 1 GO TO 80 ELSE INDXP( K2+I-1 ) = JLAM END IF ELSE INDXP( K2+I-1 ) = JLAM END IF JLAM = J ELSE K = K + 1 W( K ) = Z( JLAM ) DLAMDA( K ) = D( JLAM ) INDXP( K ) = JLAM JLAM = J END IF END IF GO TO 70 90 CONTINUE** Record the last eigenvalue.* K = K + 1 W( K ) = Z( JLAM ) DLAMDA( K ) = D( JLAM ) INDXP( K ) = JLAM* 100 CONTINUE** Sort the eigenvalues and corresponding eigenvectors into DLAMDA* and Q2 respectively. The eigenvalues/vectors which were not* deflated go into the first K slots of DLAMDA and Q2 respectively,* while those which were deflated go into the last N - K slots.* DO 110 J = 1, N JP = INDXP( J ) DLAMDA( J ) = D( JP ) PERM( J ) = INDXQ( INDX( JP ) ) CALL CCOPY( QSIZ, Q( 1, PERM( J ) ), 1, Q2( 1, J ), 1 ) 110 CONTINUE** The deflated eigenvalues and their corresponding vectors go back* into the last N - K slots of D and Q respectively.* IF( K.LT.N ) THEN CALL SCOPY( N-K, DLAMDA( K+1 ), 1, D( K+1 ), 1 ) CALL CLACPY( 'A', QSIZ, N-K, Q2( 1, K+1 ), LDQ2, Q( 1, K+1 ), $ LDQ ) END IF* RETURN** End of CLAED8* END
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -