⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 dlasq3.f

📁 计算矩阵的经典开源库.全世界都在用它.相信你也不能例外.
💻 F
字号:
      SUBROUTINE DLASQ3( I0, N0, Z, PP, DMIN, SIGMA, DESIG, QMAX, NFAIL,     $                   ITER, NDIV, IEEE )**  -- LAPACK auxiliary routine (instrumented to count ops, version 3.0) --*     Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,*     Courant Institute, Argonne National Lab, and Rice University*     May 17, 2000**     .. Scalar Arguments ..      LOGICAL            IEEE      INTEGER            I0, ITER, N0, NDIV, NFAIL, PP      DOUBLE PRECISION   DESIG, DMIN, QMAX, SIGMA*     ..*     .. Array Arguments ..      DOUBLE PRECISION   Z( * )*     ..*     .. Common block to return operation count ..      COMMON             / LATIME / OPS, ITCNT*     ..*     .. Scalars in Common ..      DOUBLE PRECISION   ITCNT, OPS*     ..**  Purpose*  =======**  DLASQ3 checks for deflation, computes a shift (TAU) and calls dqds.*  In case of failure it changes shifts, and tries again until output*  is positive.**  Arguments*  =========**  I0     (input) INTEGER*         First index.**  N0     (input) INTEGER*         Last index.**  Z      (input) DOUBLE PRECISION array, dimension ( 4*N )*         Z holds the qd array.**  PP     (input) INTEGER*         PP=0 for ping, PP=1 for pong.**  DMIN   (output) DOUBLE PRECISION*         Minimum value of d.**  SIGMA  (output) DOUBLE PRECISION*         Sum of shifts used in current segment.**  DESIG  (input/output) DOUBLE PRECISION*         Lower order part of SIGMA**  QMAX   (input) DOUBLE PRECISION*         Maximum value of q.**  NFAIL  (output) INTEGER*         Number of times shift was too big.**  ITER   (output) INTEGER*         Number of iterations.**  NDIV   (output) INTEGER*         Number of divisions.**  TTYPE  (output) INTEGER*         Shift type.**  IEEE   (input) LOGICAL*         Flag for IEEE or non IEEE arithmetic (passed to DLASQ5).**  =====================================================================**     .. Parameters ..      DOUBLE PRECISION   CBIAS      PARAMETER          ( CBIAS = 1.50D0 )      DOUBLE PRECISION   ZERO, QURTR, HALF, ONE, TWO, HUNDRD      PARAMETER          ( ZERO = 0.0D0, QURTR = 0.250D0, HALF = 0.5D0,     $                     ONE = 1.0D0, TWO = 2.0D0, HUNDRD = 100.0D0 )*     ..*     .. Local Scalars ..      INTEGER            IPN4, J4, N0IN, NN, TTYPE      DOUBLE PRECISION   DMIN1, DMIN2, DN, DN1, DN2, EPS, S, SAFMIN, T,     $                   TAU, TEMP, TOL, TOL2*     ..*     .. External Subroutines ..      EXTERNAL           DLASQ4, DLASQ5, DLASQ6*     ..*     .. External Function ..      DOUBLE PRECISION   DLAMCH      EXTERNAL           DLAMCH*     ..*     .. Intrinsic Functions ..      INTRINSIC          ABS, DBLE, MIN, SQRT*     ..*     .. Save statement ..      SAVE               TTYPE      SAVE               DMIN1, DMIN2, DN, DN1, DN2, TAU*     ..*     .. Data statement ..      DATA               TTYPE / 0 /      DATA               DMIN1 / ZERO /, DMIN2 / ZERO /, DN / ZERO /,     $                   DN1 / ZERO /, DN2 / ZERO /, TAU / ZERO /*     ..*     .. Executable Statements ..*      OPS = OPS + DBLE( 2 )      N0IN = N0      EPS = DLAMCH( 'Precision' )      SAFMIN = DLAMCH( 'Safe minimum' )      TOL = EPS*HUNDRD      TOL2 = TOL**2**     Check for deflation.*   10 CONTINUE*      IF( N0.LT.I0 )     $   RETURN      IF( N0.EQ.I0 )     $   GO TO 20      NN = 4*N0 + PP      IF( N0.EQ.( I0+1 ) )     $   GO TO 40**     Check whether E(N0-1) is negligible, 1 eigenvalue.*      OPS = OPS + DBLE( 3 )      IF( Z( NN-5 ).GT.TOL2*( SIGMA+Z( NN-3 ) ) .AND.     $    Z( NN-2*PP-4 ).GT.TOL2*Z( NN-7 ) )     $   GO TO 30*   20 CONTINUE*      OPS = OPS + DBLE( 1 )      Z( 4*N0-3 ) = Z( 4*N0+PP-3 ) + SIGMA      N0 = N0 - 1      GO TO 10**     Check  whether E(N0-2) is negligible, 2 eigenvalues.*   30 CONTINUE*      OPS = OPS + DBLE( 2 )      IF( Z( NN-9 ).GT.TOL2*SIGMA .AND.     $    Z( NN-2*PP-8 ).GT.TOL2*Z( NN-11 ) )     $   GO TO 50*   40 CONTINUE*      IF( Z( NN-3 ).GT.Z( NN-7 ) ) THEN         S = Z( NN-3 )         Z( NN-3 ) = Z( NN-7 )         Z( NN-7 ) = S      END IF      OPS = OPS + DBLE( 3 )      IF( Z( NN-5 ).GT.Z( NN-3 )*TOL2 ) THEN         OPS = OPS + DBLE( 5 )         T = HALF*( ( Z( NN-7 )-Z( NN-3 ) )+Z( NN-5 ) )         S = Z( NN-3 )*( Z( NN-5 ) / T )         IF( S.LE.T ) THEN            OPS = OPS + DBLE( 7 )            S = Z( NN-3 )*( Z( NN-5 ) /     $          ( T*( ONE+SQRT( ONE+S / T ) ) ) )         ELSE            OPS = OPS + DBLE( 6 )            S = Z( NN-3 )*( Z( NN-5 ) / ( T+SQRT( T )*SQRT( T+S ) ) )         END IF         OPS = OPS + DBLE( 4 )         T = Z( NN-7 ) + ( S+Z( NN-5 ) )         Z( NN-3 ) = Z( NN-3 )*( Z( NN-7 ) / T )         Z( NN-7 ) = T      END IF      Z( 4*N0-7 ) = Z( NN-7 ) + SIGMA      Z( 4*N0-3 ) = Z( NN-3 ) + SIGMA      N0 = N0 - 2      GO TO 10*   50 CONTINUE**     Reverse the qd-array, if warranted.*      IF( DMIN.LE.ZERO .OR. N0.LT.N0IN ) THEN         OPS = OPS + DBLE( 1 )         IF( CBIAS*Z( 4*I0+PP-3 ).LT.Z( 4*N0+PP-3 ) ) THEN            IPN4 = 4*( I0+N0 )            DO 60 J4 = 4*I0, 2*( I0+N0-1 ), 4               TEMP = Z( J4-3 )               Z( J4-3 ) = Z( IPN4-J4-3 )               Z( IPN4-J4-3 ) = TEMP               TEMP = Z( J4-2 )               Z( J4-2 ) = Z( IPN4-J4-2 )               Z( IPN4-J4-2 ) = TEMP               TEMP = Z( J4-1 )               Z( J4-1 ) = Z( IPN4-J4-5 )               Z( IPN4-J4-5 ) = TEMP               TEMP = Z( J4 )               Z( J4 ) = Z( IPN4-J4-4 )               Z( IPN4-J4-4 ) = TEMP   60       CONTINUE            IF( N0-I0.LE.4 ) THEN               Z( 4*N0+PP-1 ) = Z( 4*I0+PP-1 )               Z( 4*N0-PP ) = Z( 4*I0-PP )            END IF            DMIN2 = MIN( DMIN2, Z( 4*N0+PP-1 ) )            Z( 4*N0+PP-1 ) = MIN( Z( 4*N0+PP-1 ), Z( 4*I0+PP-1 ),     $                            Z( 4*I0+PP+3 ) )            Z( 4*N0-PP ) = MIN( Z( 4*N0-PP ), Z( 4*I0-PP ),     $                          Z( 4*I0-PP+4 ) )            QMAX = MAX( QMAX, Z( 4*I0+PP-3 ), Z( 4*I0+PP+1 ) )            DMIN = -ZERO         END IF      END IF*   70 CONTINUE*      IF( DMIN.LT.ZERO .OR. SAFMIN*QMAX.LT.MIN( Z( 4*N0+PP-1 ),     $    Z( 4*N0+PP-9 ), DMIN2+Z( 4*N0-PP ) ) ) THEN**        Choose a shift.*         CALL DLASQ4( I0, N0, Z, PP, N0IN, DMIN, DMIN1, DMIN2, DN, DN1,     $                DN2, TAU, TTYPE )**        Call dqds until DMIN > 0.*   80    CONTINUE*         CALL DLASQ5( I0, N0, Z, PP, TAU, DMIN, DMIN1, DMIN2, DN,     $                DN1, DN2, IEEE )*         NDIV = NDIV + ( N0-I0+2 )         ITER = ITER + 1**        Check status.*         IF( DMIN.GE.ZERO .AND. DMIN1.GT.ZERO ) THEN**           Success.*            GO TO 100*         ELSE IF( DMIN.LT.ZERO .AND. DMIN1.GT.ZERO .AND.     $            Z( 4*( N0-1 )-PP ).LT.TOL*( SIGMA+DN1 ) .AND.     $            ABS( DN ).LT.TOL*SIGMA ) THEN**           Convergence hidden by negative DN.*            OPS = OPS + DBLE( 2 )            Z( 4*( N0-1 )-PP+2 ) = ZERO            DMIN = ZERO            GO TO 100         ELSE IF( DMIN.LT.ZERO ) THEN**           TAU too big. Select new TAU and try again.*            NFAIL = NFAIL + 1            IF( TTYPE.LT.-22 ) THEN**              Failed twice. Play it safe.*               TAU = ZERO            ELSE IF( DMIN1.GT.ZERO ) THEN**              Late failure. Gives excellent shift.*               OPS = OPS + DBLE( 4 )               TAU = ( TAU+DMIN )*( ONE-TWO*EPS )               TTYPE = TTYPE - 11            ELSE**              Early failure. Divide by 4.*               OPS = OPS + DBLE( 1 )               TAU = QURTR*TAU               TTYPE = TTYPE - 12            END IF            GO TO 80         ELSE IF( DMIN.NE.DMIN ) THEN**           NaN.*            TAU = ZERO            GO TO 80         ELSE**           Possible underflow. Play it safe.*            GO TO 90         END IF      END IF**     Risk of underflow.*   90 CONTINUE      CALL DLASQ6( I0, N0, Z, PP, DMIN, DMIN1, DMIN2, DN, DN1, DN2 )      NDIV = NDIV + ( N0-I0+2 )      ITER = ITER + 1      TAU = ZERO*  100 CONTINUE      OPS = OPS + DBLE( 4 )      IF( TAU.LT.SIGMA ) THEN         DESIG = DESIG + TAU         T = SIGMA + DESIG         DESIG = DESIG - ( T-SIGMA )      ELSE         T = SIGMA + TAU         DESIG = SIGMA - ( T-TAU ) + DESIG      END IF      SIGMA = T*      RETURN**     End of DLASQ3*      END

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -